
Guohua Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9103978/publications.pdf Version: 2024-02-01

Споних Сто

#	Article	IF	CITATIONS
1	Are Ionic Liquids Chemically Stable?. Chemical Reviews, 2017, 117, 7113-7131.	47.7	463
2	Thermal, electrochemical and radiolytic stabilities of ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 8382-8402.	2.8	248
3	Deep Oxidative Desulfurization of Fuels Catalyzed by Ionic Liquid in the Presence of H2O2. Energy & Fuels, 2007, 21, 383-384.	5.1	155
4	Oneâ€Pot Conversion of Carbon Dioxide, Ethylene Oxide, and Amines to 3â€Arylâ€2â€oxazolidinones Catalyzed with Binary Ionic Liquids. ChemCatChem, 2014, 6, 278-283.	3.7	87
5	Anion–Cation Cooperative Catalysis by Ionic Liquids. ChemCatChem, 2011, 3, 1359-1364.	3.7	76
6	DBU and DBUâ€Derived Ionic Liquid Synergistic Catalysts for the Conversion of Carbon Dioxide/Carbon Disulfide to 3â€Arylâ€2â€oxazolidinones/[1,3]Dithiolanâ€2â€ylidenephenyl―amine. ChemCatChem, 2016, 8, 83	30 ² 8 ⁷ 38.	74
7	Swelling Poly(ionic liquid)s: Synthesis and Application as Quasi-Homogeneous Catalysts in the Reaction of Ethylene Carbonate with Aniline. ACS Macro Letters, 2016, 5, 435-438.	4.8	68
8	Recent advances in H ₂ PO ₄ ^{â^'} fluorescent sensors. RSC Advances, 2014, 4, 29735-29749.	3.6	65
9	A proof-of-concept fluorescent strategy for highly selective detection of Cr(vi) based on inner filter effect using a hydrophilic ionic chemosensor. Analytical Methods, 2013, 5, 1669.	2.7	55
10	Imidazolium ionic liquids/organic bases: Efficient intermolecular synergistic catalysts for the cycloaddition of CO2 and epoxides under atmospheric pressure. Molecular Catalysis, 2018, 446, 124-130.	2.0	45
11	Ecoâ€Efficient Synthesis of Cyclic Carbamates/Dithiocarbonimidates from Cyclic Carbonates/Trithiocarbonate and Aromatic Amines Catalyzed by Ionic Liquid BmimOAc. Advanced Synthesis and Catalysis, 2014, 356, 3125-3134.	4.3	42
12	Anion exchange: a novel way of preparing hierarchical porous structure in poly(ionic liquid)s. Chemical Communications, 2017, 53, 3785-3788.	4.1	40
13	Water-enriched poly(ionic liquid)s: highly-efficient microreactors for the hydrolysis of ethylene carbonate. Green Chemistry, 2018, 20, 1594-1601.	9.0	39
14	N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate. Catalysis Communications, 2009, 10, 665-668.	3.3	38
15	Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces. Chemical Science, 2017, 8, 789-794.	7.4	36
16	Swelling acidic poly(ionic liquid)s as efficient catalysts for the esterification of cyclohexene and formic acid. Green Energy and Environment, 2020, 5, 138-146.	8.7	34
17	Selective Synthesis of 5‣ubstituted <i>N</i> â€Aryloxazolidinones by Cycloaddition Reaction of Epoxides with Arylcarbamates Catalyzed by the Ionic Liquid BmimOAc. European Journal of Organic Chemistry, 2016, 2016, 3650-3656.	2.4	31
18	Oxidative Desulfurization of Model Oil over Au/Ti-MWW. Catalysis Letters, 2008, 122, 321-324.	2.6	30

Сиониа Сао

#	Article	IF	CITATIONS
19	Swelling Poly(ionic liquid) Supported by Three-Dimensional Wire Mesh for Oil/Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 14347-14353.	8.0	30
20	Helical, Axial, and Central Chirality Combined in a Single Cage: Synthesis, Absolute Configuration, and Recognition Properties. Chemistry - A European Journal, 2016, 22, 8038-8042.	3.3	27
21	Poly(ionic liquid)-Coated Meshes with Opposite Wettability for Continuous Oil/Water Separation. Industrial & Engineering Chemistry Research, 2020, 59, 6672-6680.	3.7	26
22	Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions. Chinese Journal of Catalysis, 2021, 42, 297-309.	14.0	25
23	Reaction mechanisms of carbon dioxide, ethylene oxide and amines catalyzed by ionic liquids BmimBr and BmimOAc: a DFT study. Physical Chemistry Chemical Physics, 2016, 18, 27951-27957.	2.8	22
24	Mechanistic Studies of CO2 Cycloaddition Reaction Catalyzed by Amine-Functionalized Ionic Liquids. Frontiers in Chemistry, 2019, 7, 615.	3.6	20
25	BmimOAc ionic liquid: A highly efficient catalyst for synthesis of 3-aryl-2-oxazolidinones by direct condensation of 2-(arylamino) alcohols with diethyl carbonate. Journal of Molecular Catalysis A, 2015, 408, 271-277.	4.8	18
26	Phenolic hydroxyl-functionalized imidazolium ionic liquids: Highly efficient catalysts for the fixation of CO2 to cyclic carbonates. Journal of Molecular Catalysis A, 2016, 418-419, 1-8.	4.8	18
27	Swelling Poly (Ionic Liquid)s: Heterogeneous Catalysts That are Superior than Homogeneous Catalyst for Ethylene Carbonate Transformation. ChemistrySelect, 2017, 2, 9443-9449.	1.5	17
28	CO ₂ atmosphere enables efficient catalytic hydration of ethylene oxide by ionic liquids/organic bases at low water/epoxide ratios. Green Chemistry, 2021, 23, 3386-3391.	9.0	15
29	Pyrene-appended, benzimidazoliums-urea-based ratiometric fluorescent chemosensor for highly selective detecting of H2PO4â°. Analytical Methods, 2013, 5, 3222.	2.7	14
30	Poly(ionic liquid)s-Supported N-Heterocyclic Carbene Silver Complexes for the Cycloaddition of CO2 with Epoxides. Catalysis Letters, 2020, 150, 1196-1203.	2.6	14
31	Poly(ionic liquid)s with superior swelling and enrichment properties in solvents. Polymer Chemistry, 2021, 12, 2731-2742.	3.9	14
32	Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate catalyzed by swelling poly(ionic liquid)s. Green Chemical Engineering, 2021, 2, 423-430.	6.3	14
33	Synthesis, characterization and sulfide oxidation activity of vanadyl Schiff base complexes anchored on MCM-41. Journal of Porous Materials, 2008, 15, 127-132.	2.6	13
34	Synthesis of Functionalized Cyclic Carbonates by Oneâ€Pot Reactions of Carbon Dioxide, Epibromohydrin, and Phenols, Thiophenols, or Carboxylic Acids Catalyzed by Ionic Liquids. European Journal of Organic Chemistry, 2017, 2017, 753-759.	2.4	12
35	Cross-linked poly(ionic liquid) as precursors for nitrogen-doped porous carbons. RSC Advances, 2019, 9, 8137-8145.	3.6	11
36	Ureaâ€Functionalized Swelling Poly(ionic liquid)s as Efficient Catalysts for the Transesterification and Hydrolysis of Ethylene Carbonate. ChemCatChem, 2021, 13, 3945-3952.	3.7	11

Сиониа Сао

#	Article	IF	CITATIONS
37	Ionic Manganese Porphyrins with S-containing Counter Anions: Mimicking Cytochrome P450 Activity for Alkene Epoxidation. Catalysis Letters, 2008, 124, 334-339.	2.6	9
38	Recognition and sensing of anions through synergistic effects using simple benzimidazolium-urea receptors. Science Bulletin, 2012, 57, 1266-1274.	1.7	8
39	Superhydrophilic Al2O3 composite meshes for continuous high-efficiency oil-water separation. Materials Letters, 2020, 274, 127892.	2.6	8
40	Efficient Baylis-Hillman Reaction via a 1,4-Diazabicyclo[2.2.2]octane-based Ionic Catalyst. Monatshefte Für Chemie, 2007, 138, 1163-1166.	1.8	6
41	Ionic liquids containing the urea moiety for recognition of halides and complex anions. Science Bulletin, 2012, 57, 473-478.	1.7	6
42	Hydroxyalkylation of indole with cyclic carbonates catalyzed by ionic liquids. Chinese Journal of Catalysis, 2013, 34, 1187-1191.	14.0	5
43	Synthesis of Bisâ€benzimidazolium Cyclic Receptors and Their Anion Binding Properties. Chinese Journal of Chemistry, 2013, 31, 673-678.	4.9	5
44	Polymer supported N-heterocyclic carbene ruthenium complex catalyzed transfer hydrogenation of ketones. Catalysis Communications, 2020, 138, 105924.	3.3	4
45	Control over the Free Space within Poly(ionic liquid)s for Selective Adsorption of "Size-Matching― Dyes. ACS Applied Polymer Materials, 2020, 2, 4864-4873.	4.4	3
46	Reaction Mechanism of CO ₂ and Styrene Oxide Catalyzed by Ionic Liquids: A Combined DFT Calculation and Experimental Study. Journal of Physical Chemistry A, 2020, 124, 7991-7998.	2.5	3
47	Swelling poly(ionic liquid)s for demulsifying <scp>oilâ€inâ€water</scp> emulsion by anion exchange. Polymers for Advanced Technologies, 2022, 33, 2798-2806.	3.2	2
48	Synthesis, Characterizations and Applications of Fluoroazaphosphatranes. Chemistry - an Asian Journal, 2022, , e202200115.	3.3	0