RadosÅ, aw JasiÅ, ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9103523/publications.pdf

Version: 2024-02-01

62 401 papers citations

10 17 h-index g-index

70 70 all docs citations

70 times ranked 208 citing authors

#	Article	IF	CITATIONS
1	Parameter estimation of a homogeneous macromodel of masonry wall made of autoclaved aerated concrete based on standard tests. Structures, 2022, 38, 385-401.	3.6	8
2	Experimental Tests of the Vector II Slab in Field Conditions, Slab and Strip Model. Civil and Environmental Engineering Reports, 2021, 31, 54-69.	0.3	1
3	Use of the AE Effect to Determine the Stresses State in AAC Masonry Walls under Compression. Materials, 2021, 14, 3459.	2.9	8
4	The Behaviour of Half-Slabs and Hollow-Core Slab in Four-Edge Supported Conditions. Applied Sciences (Switzerland), 2021, 11, 10354.	2. 5	4
5	Verifying the Shear Load Capacity of Masonry Walls by the V _{Rd} –N _{Ed} Interaction Diagram. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022031.	0.6	2
6	Comparison of Masonry Homogenization Methods – Macromodelling and Micromodeling of Walls Behaviour Made of Autoclaved Aerated Concrete Masonry Units. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022033.	0.6	2
7	Proposed Method of Distribution of Horizontal Loads on Stiffening Walls. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022032.	0.6	1
8	Research Of Influence of Horizontal Reinforcement on Compression and Shear Strength of Autoclaved Aerated Concrete Masonry. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022053.	0.6	0
9	Comparison of Influence of Superficial Strengthening with FRCM System and Kind of Mortar Type on Shear Strength of Autoclaved Aerated Concrete Masonry. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022052.	0.6	3
10	Finite Element Study on the Shear Capacity of Traditional Joints between Walls Made of AAC Masonry Units. Materials, 2020, 13, 4035.	2.9	6
11	Application of the DIC Technique to Remote Control of the Hydraulic Load System. Remote Sensing, 2020, 12, 3667.	4.0	2
12	The Use of Non-Destructive Testing (NDT) to Detect Bed Joint Reinforcement in AAC Masonry. Applied Sciences (Switzerland), 2020, 10, 4645.	2 . 5	5
13	Numerical Verification of Interaction between Masonry with Precast Reinforced Lintel Made of AAC and Reinforced Concrete Confining Elements. Applied Sciences (Switzerland), 2020, 10, 5446.	2.5	7
14	Research of Influence of Bed Joints Reinforcement On Strength of Masonry Shear Walls with Openings Made of Calcium Silicate Masonry Units. IOP Conference Series: Materials Science and Engineering, 2020, 960, 022085.	0.6	1
15	Numerical Verification of the Elastic-Plastic Menétrey-William Model (M-W-3) for Masonry Shear Walls Made of Calcium Silicate Masonry Units. IOP Conference Series: Materials Science and Engineering, 2020, 960, 022086.	0.6	0
16	Identification of Stress States in Compressed Masonry Walls Using a Non-Destructive Technique (NDT). Materials, 2020, 13, 2852.	2.9	11
17	Testing Joints between Walls Made of AAC Masonry Units. Buildings, 2020, 10, 69.	3.1	8
18	Research on semi-precast prestressed concrete slab under short-term and long-term load. MATEC Web of Conferences, 2020, 323, 02001.	0.2	0

#	Article	IF	CITATIONS
19	Effects of Opening Shapes on Behaviour of Shear Walls Made of AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 471, 022011.	0.6	9
20	Research of Influence of the Shape of Unreinforced Masonry Shear Walls Made of Calcium Silicate Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 471, 022009.	0.6	5
21	Attempt to Describe the Mechanism of Work of Masonry Joints. IOP Conference Series: Materials Science and Engineering, 2019, 471, 052054.	0.6	1
22	Validation of Elastic-Brittle, and Elastic-Plastic FEM Model of the Wall Made of Calcium Silicate and AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 603, 032001.	0.6	5
23	Strength of Unreinforced Joints of Masonry Walls Made of AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 603, 032075.	0.6	О
24	Research of Behaviour of Bed Joints Reinforced Masonry Walls with Openings Made of Autoclaved Aerated Concrete under Horizontal Shearing. IOP Conference Series: Materials Science and Engineering, 2019, 603, 022102.	0.6	3
25	Research on the Influence of Bed Joint Reinforcement on Strength and Deformability of Masonry Shear Walls. Materials, 2019, 12, 2543.	2.9	15
26	Accuracy of Eddy-Current and Radar Methods Used in Reinforcement Detection. Materials, 2019, 12, 1168.	2.9	23
27	Validation of Selected Non-Destructive Methods for Determining the Compressive Strength of Masonry Units Made of Autoclaved Aerated Concrete. Materials, 2019, 12, 389.	2.9	40
28	Application of the Minor Destructive Test (MDT) method for determination of AAC masonry compressive strength. PrzeglÄd Spawalnictwa, 2019, 91, .	0.5	2
29	PROPOSAL OF PROCEDURE FOR IDENTIFICATION OF MENÉTREY–WILLAM (M-W-3) PLASTICITY SURFACE OF HOMOGENEOUS AND HOLLOW MASONRY UNITS. Engineering Structures and Technologies, 2019, 11, 40-49.	0.1	5
30	Size effect of monotonically sheared masonry walls made of AAC masonry units. Ce/Papers, 2018, 2, E12-E25.	0.3	3
31	Comparisons of confined and different types of reinforcement on the behavior of masonry shear walls. Ce/Papers, 2018, 2, 353-365.	0.3	5
32	Joints in masonry walls. Ce/Papers, 2018, 2, 339-346.	0.3	3
33	Analysis of AAC precast lintels embedded in walls different construction. Ce/Papers, 2018, 2, 367-376.	0.3	4
34	Effects of specimen dimensions and shape on compressive strength of specific autoclaved aerated concrete. Ce/Papers, 2018, 2, 541-556.	0.3	4
35	Tests of Joints in AAC Masonry Walls. Architecture Civil Engineering Environment, 2018, 11, 79-92.	0.6	4
36	Joints in masonry walls. Acta Scientiarum Polonorum Architectura, 2018, 17, 83-92.	0.3	2

#	Article	IF	CITATIONS
37	WpÅ,yw sposobu murowania na wytrzymaÅ,oÅ,ć na Å,cinanie Å,cian z elementów murowych z ABK. MateriaÅy Budowlane, 2018, 1, 79-81.	0.1	O
38	Badania Å·cian usztywniajÄcych z otworami, wykonanych z ABK. MateriaÅy Budowlane, 2018, 1, 40-41.	0.1	0
39	NapręŹ¼enia rysujÄ…ce i niszczÄ…ce Å>cian usztywniajÄ…cych z otworami, wykonanych z elementów murow ABK. MateriaÅ y Budowlane, 2018, 1, 68-69.	ych z 0.1	O
40	OdksztaÅ,calność postaciowa i sztywność Å›cian usztywniajÄcych z otworami, wykonanych z elementów murowych z ABK. MateriaÅ y Budowlane, 2018, 1, 38-39.	0.1	0
41	Cracking and failure of precast AAC lintels in walls subjected to in-plane vertical loading. Acta Scientiarum Polonorum Architectura, 2018, 17, 93-104.	0.3	2
42	Research and Numerical Investigation of Masonry – AAC Precast Lintels Interaction. Procedia Engineering, 2017, 193, 385-392.	1.2	13
43	Adoption of the Willam-Warnke Failure Criterion for Describing Behavior of Ca-Si Hollow Blocks. Procedia Engineering, 2017, 193, 470-477.	1.2	10
44	Identification of the Parameters of Menétrey -Willam Failure Surface of Calcium Silicate Units. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032045.	0.6	9
45	Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032044.	0.6	0
46	Badanie poÅ,Ä…czeÅ,, Å:cian murowych. MateriaÅy Budowlane, 2017, 1, 96-98.	0.1	3
47	NOŚNOŚĆ STREF PRZYPODPOROWYCH NADPROŻY Z AUTOKLAWIZOWANEGO BETONU KOMÓRKOWEGO. Journal of Civil Engineering, Environment and Architecture, 2017, , .	0.0	0
48	WspóÅ,praca muru i prefabrykowanego nadproża z ABK. Badania doÅ›wiadczalne. MateriaÅy Budowlane, 2017, 1, 40-43.	0.1	0
49	Badania wpÅ,ywu ksztaÅ,tu Å>cian murowanych z elementów silikatowych poddanych Å>cinaniu. MateriaÅ y Budowlane, 2017, 1, 23-28.	0.1	O
50	Badania wpÅ,ywu ksztaÅ,tu murowych Å:cian z autoklawizowanego betonu komÃ ³ rkowego poddanych Å:cinaniu. MateriaÅ : Budowlane, 2017, 1, 108-113.	0.1	0
51	РоÅ,Ä…czenia Å›cian murowych, podstawy teoretyczne. MateriaÅ y Budowlane, 2017, 1, 192-195.	0.1	O
52	NoÅ›ność prefabrykowanych nadproÅ⅓y z ABK. MateriaÅy Budowlane, 2017, 1, 132-135.	0.1	0
53	Research of Light Concrete Precast Lintels. Procedia Engineering, 2016, 161, 611-617.	1.2	16
54	Mechanical Properties of Masonry Walls Made of Calcium Silicate Materials Made in Poland. Part 1. Masonry Properties and Compressive Strength. Procedia Engineering, 2016, 161, 904-910.	1.2	10

#	Article	IF	CITATIONS
55	Mechanical Properties of Masonry Walls Made of Calcium Silicate Materials Made in Poland. Part 2. Shear and Flexural Strength. Procedia Engineering, 2016, 161, 911-917.	1.2	7
56	Study of Autoclaved Aerated Concrete Masonry Walls with Horizontal Reinforcement under Compression and Shear. Procedia Engineering, 2016, 161, 918-924.	1.2	27
57	Comparison Research of Bed Joints Construction and Bed Joints Reinforcement on Shear Parameters of AAC Masonry Walls. Journal of Civil Engineering and Architecture, 2016, 10, .	0.1	6
58	Aging markers for in-service natural ester-based insulating fluids. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18, 714-719.	2.9	73
59	Shear Capacity of the Zone of Supporting of Precast Lintels Made of AAC. IOP Conference Series: Materials Science and Engineering, 0, 471, 052070.	0.6	3
60	Static Analysis of Prestressed Floor Slabs HC500 with Changes in Tendon Adhesion to Concrete Induced by Penetration of Chloride Ions. IOP Conference Series: Materials Science and Engineering, 0, 471, 052035.	0.6	2
61	Effects of Technology of Placing Different Types of Reinforcement in Bed Joints on Compressive and Shear Strength of AAC Masonry Walls. IOP Conference Series: Materials Science and Engineering, 0, 471, 022010.	0.6	6
62	Proposal of Empirical Homogenization of Masonry Wall Made of AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 0, 960, 022084.	0.6	1