Scott T Grafton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9103427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7641-7646.	3.3	1,399
2	Localization of grasp representations in humans by positron emission tomography. Experimental Brain Research, 1996, 112, 103-11.	0.7	902
3	Functional Mapping of Sequence Learning in Normal Humans. Journal of Cognitive Neuroscience, 1995, 7, 497-510.	1.1	735
4	Controllability of structural brain networks. Nature Communications, 2015, 6, 8414.	5.8	600
5	Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 2015, 18, 744-751.	7.1	507
6	Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6169-6174.	3.3	492
7	Involvement of visual cortex in tactile discrimination of orientation. Nature, 1999, 401, 587-590.	13.7	469
8	Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 2007, 26, 590-616.	0.6	448
9	Robust detection of dynamic community structure in networks. Chaos, 2013, 23, 013142.	1.0	400
10	Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 2005, 8, 505-511.	7.1	367
11	Conserved and variable architecture of human white matter connectivity. NeuroImage, 2011, 54, 1262-1279.	2.1	328
12	Actions or Hand-Object Interactions? Human Inferior Frontal Cortex and Action Observation. Neuron, 2003, 39, 1053-1058.	3.8	318
13	Task-Based Core-Periphery Organization of Human Brain Dynamics. PLoS Computational Biology, 2013, 9, e1003171.	1.5	302
14	Brain Blood Flow Alterations Induced by Therapeutic Vagus Nerve Stimulation in Partial Epilepsy: I. Acute Effects at High and Low Levels of Stimulation. Epilepsia, 1998, 39, 983-990.	2.6	292
15	Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nature Neuroscience, 2003, 6, 682-687.	7.1	257
16	Stimulation-Based Control of Dynamic Brain Networks. PLoS Computational Biology, 2016, 12, e1005076.	1.5	234
17	Motor Task Difficulty and Brain Activity: Investigation of Goal-Directed Reciprocal Aiming Using Positron Emission Tomography. Journal of Neurophysiology, 1997, 77, 1581-1594.	0.9	212
18	Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Experimental Brain Research, 1993, 95, 172-6.	0.7	197

SCOTT T GRAFTON

#	Article	IF	CITATIONS
19	Motor Subcircuits Mediating the Control of Movement Velocity: A PET Study. Journal of Neurophysiology, 1998, 80, 2162-2176.	0.9	170
20	Neural Evidence Linking Visual Object Enumeration and Attention. Journal of Cognitive Neuroscience, 1999, 11, 36-51.	1.1	164
21	Pallidotomy increases activity of motor association cortex in parkinson's disease: A positron emission tomographic study. Annals of Neurology, 1995, 37, 776-783.	2.8	150
22	Optimal trajectories of brain state transitions. NeuroImage, 2017, 148, 305-317.	2.1	143
23	QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nature Methods, 2021, 18, 775-778.	9.0	127
24	Brain Network Adaptability across Task States. PLoS Computational Biology, 2015, 11, e1004029.	1.5	120
25	Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints. PLoS Computational Biology, 2016, 12, e1005203.	1.5	118
26	A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington's disease. Annals of Neurology, 1990, 28, 614-621.	2.8	110
27	Structurally-Constrained Relationships between Cognitive States in the Human Brain. PLoS Computational Biology, 2014, 10, e1003591.	1.5	86
28	Proprioception does not quickly drift during visual occlusion. Experimental Brain Research, 2000, 134, 363-377.	0.7	83
29	The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure. Scientific Reports, 2018, 8, 2507.	1.6	81
30	From â€~acting on' to â€~acting with': the functional anatomy of object-oriented action schemata. Progress in Brain Research, 2003, 142, 127-139.	0.9	72
31	Cross-linked structure of network evolution. Chaos, 2014, 24, 013112.	1.0	68
32	The Human Motor System Supports Sequence-Specific Representations over Multiple Training-Dependent Timescales. Cerebral Cortex, 2015, 25, 4213-4225.	1.6	67
33	Dynamic network centrality summarizes learning in the human brain. Journal of Complex Networks, 2013, 1, 83-92.	1.1	60
34	Network analysis of motor system connectivity in Parkinson's disease: Modulation of thalamocortical interactions after pallidotomy. Human Brain Mapping, 1994, 2, 45-55.	1.9	59
35	Individual differences in shifting decision criterion: A recognition memory study. Memory and Cognition, 2012, 40, 1016-1030.	0.9	57
36	4-[18F]Fluoro-L-m-Tyrosine: An L-3,4-Dihydroxyphenylalanine Analog for Probing Presynaptic Dopaminergic Function with Positron Emission Tomography. Journal of Neurochemistry, 1989, 53, 311-314.	2.1	56

SCOTT T GRAFTON

#	Article	IF	CITATIONS
37	Differential Recruitment of Anterior Intraparietal Sulcus and Superior Parietal Lobule during Visually Guided Grasping Revealed by Electrical Neuroimaging. Journal of Neuroscience, 2008, 28, 13615-13620.	1.7	56
38	Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan. PLoS Computational Biology, 2016, 12, e1005178.	1.5	54
39	Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity. Annual Review of Biomedical Engineering, 2017, 19, 327-352.	5.7	49
40	Motor Learning of Compatible and Incompatible Visuomotor Maps. Journal of Cognitive Neuroscience, 2001, 13, 217-231.	1.1	44
41	Feature Interactions Enable Decoding of Sensorimotor Transformations for Goal-Directed Movement. Journal of Neuroscience, 2014, 34, 6860-6873.	1.7	42
42	Beyond modularity: Fine-scale mechanisms and rules for brain network reconfiguration. NeuroImage, 2018, 166, 385-399.	2.1	42
43	Human Basal Ganglia and the Dynamic Control of Force during On-Line Corrections. Journal of Neuroscience, 2011, 31, 1600-1605.	1.7	37
44	Harm to self outweighs benefit to others in moral decision making. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7963-7968.	3.3	31
45	Subjective value then confidence in human ventromedial prefrontal cortex. PLoS ONE, 2020, 15, e0225617.	1.1	29
46	The Relative Influence of Goal and Kinematics on Corticospinal Excitability Depends on the Information Provided to the Observer. Cerebral Cortex, 2015, 25, 2229-2237.	1.6	27
47	Quantifying rapid changes in cardiovascular state with a moving ensemble average. Psychophysiology, 2018, 55, e13018.	1.2	23
48	Effect of different spatial normalization approaches on tractography and structural brain networks. Network Neuroscience, 2018, 2, 362-380.	1.4	20
49	Sensitivity analysis of human brain structural network construction. Network Neuroscience, 2017, 1, 446-467.	1.4	18
50	Direct mapping rather than motor prediction subserves modulation of corticospinal excitability during observation of actions in real time. Journal of Neurophysiology, 2015, 113, 3700-3707.	0.9	15
51	Neural Representations of Sensorimotor Memory- and Digit Position-Based Load Force Adjustments Before the Onset of Dexterous Object Manipulation. Journal of Neuroscience, 2018, 38, 4724-4737.	1.7	15
52	Finding maximally disconnected subnetworks with shortest path tractography. NeuroImage: Clinical, 2019, 23, 101903.	1.4	15
53	<p>Monitoring of postural sway with a head-mounted wearable device: effects of gender, participant state, and concussion</p> . Medical Devices: Evidence and Research, 2019, Volume 12, 151-164.	0.4	13
54	From ideas to action: The prefrontal–premotor connections that shape motor behavior. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 237-255.	1.0	11

SCOTT T GRAFTON

#	Article	IF	CITATIONS
55	Improving resolution of dynamic communities in human brain networks through targeted node removal. PLoS ONE, 2017, 12, e0187715.	1.1	9
56	Measuring the representational space of music with fMRI: a case study with Sting. Neurocase, 2016, 22, 548-557.	0.2	8
57	Sympathetic involvement in time-constrained sequential foraging. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 730-745.	1.0	7
58	Ventromedial Prefrontal Cortex Activity and Sympathetic Allostasis During Value-Based Ambivalence. Frontiers in Behavioral Neuroscience, 2021, 15, 615796.	1.0	6
59	Combining Repetition Suppression and Pattern Analysis Provides New Insights into the Role of M1 and Parietal Areas in Skilled Sequential Actions. Journal of Neuroscience, 2021, 41, 7649-7661.	1.7	6
60	Representational Neural Mapping of Dexterous Grasping Before Lifting in Humans. Journal of Neuroscience, 2020, 40, 2708-2716.	1.7	6
61	Unlocking communication with the nose. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13979-13980.	3.3	5
62	Clustering Brain-Network Time Series by Riemannian Geometry. IEEE Transactions on Signal and Information Processing Over Networks, 2018, 4, 519-533.	1.6	5
63	Crystallinity characterization of white matter in the human brain. New Journal of Physics, 2021, 23, 073047.	1.2	5
64	Single-case disconnectome lesion-symptom mapping: Identifying two subtypes of limb apraxia. Neuropsychologia, 2022, 170, 108210.	0.7	4
65	Clustering brain-network-connectivity states using kernel partial correlations. , 2016, , .		1
66	Spatial coherence of oriented white matter microstructure: Applications to white matter regions associated with genetic similarity. NeuroImage, 2018, 172, 390-403.	2.1	1
67	Neural substrates of anticipatory motor adaptation for object lifting. Scientific Reports, 2020, 10, 10430.	1.6	1
68	Therapeutics: Surgical. , 2000, , 613-653.		1
69	Riemannian multi-manifold modeling and clustering in brain networks. , 2017, , .		1
70	Learning, Motor. , 2003, , 769-770.		0
71	Chapter 12 Imaging. Handbook of Clinical Neurophysiology, 2003, , 163-179.	0.0	0
72	Overt and Covert Object Features Mediate Timing of Patterned Brain Activity during Motor Planning. Cerebral Cortex Communications, 2020, 1, tgaa080.	0.7	0