
Sandra Jesus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9103241/publications.pdf Version: 2024-02-01

SANDDA LESUS

#	Article	IF	CITATIONS
1	Unravelling the Immunotoxicity of Polycaprolactone Nanoparticles—Effects of Polymer Molecular Weight, Hydrolysis, and Blends. Chemical Research in Toxicology, 2020, 33, 2819-2833.	3.3	7
2	Chitosan Nanoparticles: Shedding Light on Immunotoxicity and Hemocompatibility. Frontiers in Bioengineering and Biotechnology, 2020, 8, 100.	4.1	57
3	Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity. Chemical Research in Toxicology, 2020, 33, 915-932.	3.3	12
4	A Methodological Safe-by-Design Approach for the Development of Nanomedicines. Frontiers in Bioengineering and Biotechnology, 2020, 8, 258.	4.1	44
5	Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. International Journal of Pharmaceutics, 2020, 589, 119776.	5.2	64
6	Poly(D,L-Lactic Acid) Nanoparticle Size Reduction Increases Its Immunotoxicity. Frontiers in Bioengineering and Biotechnology, 2019, 7, 137.	4.1	35
7	Optimization of Chitosan-α-casein Nanoparticles for Improved Gene Delivery: Characterization, Stability, and Transfection Efficiency. AAPS PharmSciTech, 2019, 20, 132.	3.3	15
8	Chitosan Plus Compound 48/80: Formulation and Preliminary Evaluation as a Hepatitis B Vaccine Adjuvant. Pharmaceutics, 2019, 11, 72.	4.5	29
9	Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far. Frontiers in Bioengineering and Biotechnology, 2019, 7, 261.	4.1	62
10	The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure. AAPS PharmSciTech, 2018, 19, 101-113.	3.3	13
11	Adjuvant Activity of Poly-ε-caprolactone/Chitosan Nanoparticles Characterized by Mast Cell Activation and IFN-γ and IL-17 Production. Molecular Pharmaceutics, 2018, 15, 72-82.	4.6	28
12	Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. International Journal of Pharmaceutics, 2018, 535, 261-271.	5.2	37
13	Exosomes as adjuvants for the recombinant hepatitis B antigen: First report. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 1-11.	4.3	39
14	Chitosan:β-glucan particles as a new adjuvant for the hepatitis B antigen. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 33-43.	4.3	23
15	Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine, 2017, 12, 2335-2348.	3.3	29
16	Poly-ε-caprolactone/Chitosan and Chitosan Particles: Two Recombinant Antigen Delivery Systems for Intranasal Vaccination. Methods in Molecular Biology, 2016, 1404, 697-713.	0.9	11
17	Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-ε-caprolactone based nanoparticles. International Journal of Pharmaceutics, 2016, 504, 59-69.	5.2	41
18	Sonication-Assisted Layer-by-Layer Assembly for Low Solubility Drug Nanoformulation. ACS Applied Materials & Interfaces, 2015, 7, 11972-11983.	8.0	43

SANDRA JESUS

#	Article	IF	CITATIONS
19	Synthesis and controlled curcumin supramolecular complex release from pH-sensitive modified gum-arabic-based hydrogels. RSC Advances, 2015, 5, 94519-94533.	3.6	33
20	Freeze Dried Chitosan/ Poly-ε-Caprolactone and Poly-ε-Caprolactone Nanoparticles: Evaluation of their Potential as DNA and Antigen Delivery Systems. Journal of Genetic Syndromes & Gene Therapy, 2013, 4, .	0.2	6
21	Chitosan-Based Nanoparticles as a Hepatitis B Antigen Delivery System. Methods in Enzymology, 2012, 509, 127-142.	1.0	12
22	Recent Developments in the Nasal Immunization against Anthrax. World Journal of Vaccines, 2011, 01, 79-91.	0.8	6