
L Del Peso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9103087/publications.pdf Version: 2024-02-01

I DEL PESO

#	Article	IF	CITATIONS
1	Interleukin-3-Induced Phosphorylation of BAD Through the Protein Kinase Akt. Science, 1997, 278, 687-689.	6.0	2,085
2	Nod1, an Apaf-1-like Activator of Caspase-9 and Nuclear Factor-κB. Journal of Biological Chemistry, 1999, 274, 14560-14567.	1.6	639
3	An Induced Proximity Model for NF-κB Activation in the Nod1/RICK and RIP Signaling Pathways. Journal of Biological Chemistry, 2000, 275, 27823-27831.	1.6	478
4	Hypoxia Induces the Activation of the Phosphatidylinositol 3-Kinase/Akt Cell Survival Pathway in PC12 Cells. Journal of Biological Chemistry, 2001, 276, 22368-22374.	1.6	217
5	RICK, a Novel Protein Kinase Containing a Caspase Recruitment Domain, Interacts with CLARP and Regulates CD95-mediated Apoptosis. Journal of Biological Chemistry, 1998, 273, 12296-12300.	1.6	215
6	Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible Factor (HIF)-Mediated Induction of Glycogen Synthase 1. PLoS ONE, 2010, 5, e9644.	1.1	209
7	Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochemical Journal, 2005, 390, 189-197.	1.7	194
8	Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Research, 2010, 38, 2332-2345.	6.5	179
9	The von Hippel Lindau/Hypoxia-inducible Factor (HIF) Pathway Regulates the Transcription of the HIF-Proline Hydroxylase Genes in Response to Low Oxygen. Journal of Biological Chemistry, 2003, 278, 48690-48695.	1.6	155
10	Rho proteins induce metastatic properties in vivo. Oncogene, 1997, 15, 3047-3057.	2.6	153
11	Hypoxia Inducible Factor 1-Alpha (HIF-1 Alpha) Is Induced during Reperfusion after Renal Ischemia and Is Critical for Proximal Tubule Cell Survival. PLoS ONE, 2012, 7, e33258.	1.1	133
12	Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene, 1999, 18, 7328-7333.	2.6	125
13	Lack of Evidence for the Involvement of the Phosphoinositide 3-Kinase/Akt Pathway in the Activation of Hypoxia-inducible Factors by Low Oxygen Tension. Journal of Biological Chemistry, 2002, 277, 13508-13517.	1.6	103
14	The Transcription Factor Encyclopedia. Genome Biology, 2012, 13, R24.	13.9	103
15	The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucleic Acids Research, 2018, 46, 120-133.	6.5	96
16	Caenorhabditis elegans EGL-1 Disrupts the Interaction of CED-9 with CED-4 and Promotes CED-3 Activation. Journal of Biological Chemistry, 1998, 273, 33495-33500.	1.6	93
17	Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 689-721.	2.5	93
18	Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene, 1998, 17, 1855-1869.	2.6	92

L DEL PESO

#	Article	IF	CITATIONS
19	EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene, 2015, 34, 2609-2620.	2.6	91
20	Generation of phosphorylcholine as an essential event in the activation of Raf-1 and MAP-kinases in growth factors-induced mitogenic stimulation. Journal of Cellular Biochemistry, 1995, 57, 141-149.	1.2	89
21	Linking extracellular survival signals and the apoptotic machinery. Current Opinion in Neurobiology, 1998, 8, 613-618.	2.0	83
22	Activation of type D phospholipase by serum stimulation and ras-induced transformation in NIH3T3 cells. Oncogene, 1994, 9, 1387-95.	2.6	74
23	Vitamin D differentially regulates colon stem cells in patientâ€derived normal and tumor organoids. FEBS Journal, 2020, 287, 53-72.	2.2	67
24	miR-127 Protects Proximal Tubule Cells against Ischemia/Reperfusion: Identification of Kinesin Family Member 3B as miR-127 Target. PLoS ONE, 2012, 7, e44305.	1.1	59
25	The Ras family of GTPases in cancer cell invasion. Cellular and Molecular Life Sciences, 2000, 57, 65-76.	2.4	56
26	Disruption of the CED-9·CED-4 Complex by EGL-1 Is a Critical Step for Programmed Cell Death inCaenorhabditis elegans. Journal of Biological Chemistry, 2000, 275, 27205-27211.	1.6	56
27	ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL: Implication in Clear Cell Renal Carcinoma. Neoplasia, 2013, 15, 649-IN17.	2.3	53
28	Interaction between PARP-1 and HIF-2 \hat{l} ± in the hypoxic response. Oncogene, 2014, 33, 891-898.	2.6	47
29	Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment. BMC Genomics, 2014, 15, 472.	1.2	47
30	Cooperativity of Stress-Responsive Transcription Factors in Core Hypoxia-Inducible Factor Binding Regions. PLoS ONE, 2012, 7, e45708.	1.1	46
31	ERK2, but Not ERK1, Mediates Acquired and "De novo―Resistance to Imatinib Mesylate: Implication for CML Therapy. PLoS ONE, 2009, 4, e6124.	1.1	41
32	TFEA.ChIP: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets. Bioinformatics, 2019, 35, 5339-5340.	1.8	41
33	Hypoxia-inducible factors and cancer. Clinical and Translational Oncology, 2007, 9, 278-289.	1.2	37
34	Comparative Study of Organoids from Patient-Derived Normal and Tumor Colon and Rectal Tissue. Cancers, 2020, 12, 2302.	1.7	37
35	Identification of a region on hypoxia-inducible-factor prolyl 4-hydroxylases that determines their specificity for the oxygen degradation domains. Biochemical Journal, 2007, 408, 231-240.	1.7	36
36	Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms. Biomedicines, 2018, 6, 47.	1.4	35

L DEL PESO

#	Article	IF	CITATIONS
37	Specific oncolytic effect of a new hypoxia-inducible factor-dependent replicative adenovirus on von Hippel-Lindau-defective renal cell carcinomas. Cancer Research, 2003, 63, 6877-84.	0.4	33
38	Analysis of HIF-prolyl hydroxylases binding to substrates. Biochemical and Biophysical Research Communications, 2006, 351, 313-320.	1.0	32
39	Regulatory and Functional Connection of Microphthalmia-Associated Transcription Factor and Anti-Metastatic Pigment Epithelium Derived Factor in Melanoma. Neoplasia, 2014, 16, 529-542.	2.3	30
40	Down-regulation of Hypoxia-inducible Factor-2 in PC12 Cells by Nerve Growth Factor Stimulation. Journal of Biological Chemistry, 2003, 278, 31895-31901.	1.6	28
41	Induction of apoptosis by rho in NIH 3T3 cells requires two complementary signals. Ceramides function as a progression factor for apoptosis. Oncogene, 1995, 11, 2657-65.	2.6	28
42	Hypoxia Negatively Regulates Antimetastatic PEDF in Melanoma Cells by a Hypoxia Inducible Factor-Independent, Autophagy Dependent Mechanism. PLoS ONE, 2012, 7, e32989.	1.1	27
43	Activation of phospholipase D by growth factors and oncogenes in murine fibroblasts follow alternative but cross-talking pathways. Biochemical Journal, 1997, 322, 519-528.	1.7	26
44	The human <i>PKP2</i> /plakophilinâ€⊋ gene is induced by Wnt/β atenin in normal and colon cancerâ€associated fibroblasts. International Journal of Cancer, 2018, 142, 792-804.	2.3	26
45	Classification of Airflow Limitation Based on <i>z</i> -Score Underestimates Mortality in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 298-305.	2.5	24
46	Vitamin D and Wnt3A have additive and partially overlapping modulatory effects on gene expression and phenotype in human colon fibroblasts. Scientific Reports, 2019, 9, 8085.	1.6	23
47	Ras protein is involved in the physiological regulation of phospholipase D by platelet derived growth factor. Oncogene, 2000, 19, 431-437.	2.6	21
48	Disruption of the CED-9/CED-4 Complex by EGL-1 is a Critical Step for Programmed Cell Death in C. elegans. Journal of Biological Chemistry, 2000, 275, 27205-11.	1.6	21
49	Intussusceptive Vascular Remodeling Precedes Pathological Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1402-1418.	1.1	20
50	Activation of phospholipase D by ras proteins is independent of protein kinase C. , 1996, 61, 599-608.		17
51	The use of an active learning approach to teach metabolism to students of nutrition and dietetics. Biochemistry and Molecular Biology Education, 2013, 41, 131-138.	0.5	15
52	Accumulation of hypoxia-inducible factor-1α through a novel electrophilic, thiol antioxidant-sensitive mechanism. Cellular Signalling, 2007, 19, 2098-2105.	1.7	14
53	Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels. Rna, 2020, 26, 1006-1022.	1.6	13
54	A role for insulator elements in the regulation of gene expression response to hypoxia. Nucleic Acids Research, 2012, 40, 1916-1927.	6.5	11

L DEL PESO

#	Article	IF	CITATIONS
55	Identification of non-coding genetic variants in samples from hypoxemic respiratory disease patients that affect the transcriptional response to hypoxia. Nucleic Acids Research, 2016, 44, gkw811.	6.5	8
56	A yeast three-hybrid system that reconstitutes mammalian hypoxia inducible factor regulatory machinery. BMC Cell Biology, 2008, 9, 18.	3.0	7
57	Inc RNAs, hypoxia and metastasis. Oncoscience, 2015, 2, 795-796.	0.9	6
58	Hypoxia compensates cell cycle arrest with progenitor differentiation during angiogenesis. FASEB Journal, 2020, 34, 6654-6674.	0.2	6
59	Modulation of phospholipase D by Ras proteins mediated by its effectors Ral-GDS, PI3K and Raf-1. International Journal of Oncology, 2002, 21, 477.	1.4	5
60	Non-invasive monitoring of hypoxia-inducible factor activation by optical imaging during antiangiogenic treatment in a xenograft model of ovarian carcinoma. International Journal of Oncology, 2011, 39, 543-52.	1.4	3
61	Apoptosis and cancer. , 2000, 2, 180-190.		2
62	Hypoxia classifier for transcriptome datasets. BMC Bioinformatics, 2022, 23, .	1.2	1
63	Hypoxia-inducible factor and cancer. , 2004, 6, 3-11.		0