Lihua Qian

List of Publications by Citations

Source: https://exaly.com/author-pdf/9102957/lihua-qian-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36 19 35 1,347 g-index h-index citations papers 1,514 7.5 39 4.44 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
35	Facile Synthesis of 3D MnO2©raphene and Carbon Nanotube©raphene Composite Networks for High-Performance, Flexible, All-Solid-State Asymmetric Supercapacitors. <i>Advanced Energy Materials</i> , 2014 , 4, 1400064	21.8	330
34	Hierarchically porous Co3O4/C nanowire arrays derived from a metalorganic framework for high performance supercapacitors and the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16516-16523	13	144
33	Localized surface plasmon resonance of nanoporous gold. <i>Applied Physics Letters</i> , 2011 , 98, 093701	3.4	117
32	Hierarchical porous Ni/NiO coreBhells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10519-10525	13	106
31	How To Light Special Hot Spots in Multiparticle-Film Configurations. <i>ACS Nano</i> , 2016 , 10, 581-7	16.7	61
30	Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection. <i>Nano Research</i> , 2015 , 8, 2978-2987	10	58
29	Hierarchical nanoporous gold-platinum with heterogeneous interfaces for methanol electrooxidation. <i>Scientific Reports</i> , 2014 , 4, 4370	4.9	54
28	Planar integration of flexible micro-supercapacitors with ultrafast charge and discharge based on interdigital nanoporous gold electrodes on a chip. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9502-9510	13	51
27	Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6891		44
26	Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. <i>Nano Research</i> , 2011 , 4, 1117-1128	10	33
25	Plasmon-enhanced fluorescence of PbS quantum dots for remote near-infrared imaging. <i>Chemical Communications</i> , 2015 , 51, 141-4	5.8	32
24	Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. <i>Nano Research</i> , 2018 , 11, 4123-4132	10	32
23	Fabrication of Large-Area, High-Enhancement SERS Substrates with Tunable Interparticle Spacing and Application in Identifying Microorganisms at the Single Cell Level. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3320-3328	3.8	28
22	Nanoporous gold-alumina core-shell films with tunable optical properties. <i>Nanotechnology</i> , 2010 , 21, 305705	3.4	23
21	Tuning the morphology and composition of ultrathin cobalt oxide films via atomic layer deposition. <i>RSC Advances</i> , 2015 , 5, 71816-71823	3.7	22
20	Surface-Atom Dependence of ZnO-Supported Ag@Pd Core@Shell Nanocatalysts in CO2 Hydrogenation to CH3OH. <i>ChemCatChem</i> , 2017 , 9, 924-928	5.2	20
19	An ultranarrow SPR linewidth in the UV region for plasmonic sensing. <i>Nanoscale</i> , 2019 , 11, 4061-4066	7.7	20

(2018-2020)

18	Electrochemical Fabrication and Reactivation of Nanoporous Gold with Abundant Surface Steps for CO2 Reduction. <i>ACS Catalysis</i> , 2020 , 10, 8860-8869	13.1	20	
17	Closely packed nanoparticle monolayer as a strain gauge fabricated by convective assembly at a confined angle. <i>Nano Research</i> , 2014 , 7, 824-834	10	19	
16	Electrochemical training of nanoporous Cu-In catalysts for efficient CO2-to-CO conversion and high durability. <i>Electrochimica Acta</i> , 2019 , 295, 584-590	6.7	16	
15	Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy. <i>Nanoscale</i> , 2014 , 6, 9192-7	7.7	15	
14	Ultrasensitive strain gauge with tunable temperature coefficient of resistivity. <i>Nano Research</i> , 2016 , 9, 1346-1357	10	14	
13	Electrochemical Biosensor Based on Nanoporous Au/CoO Core-Shell Material with Synergistic Catalysis. <i>ChemPhysChem</i> , 2016 , 17, 98-104	3.2	13	
12	Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing. <i>Nanoscale</i> , 2014 , 6, 13809-16	7.7	12	
11	Widely tuning optical properties of nanoporous gold-titania core-shells. <i>Journal of Chemical Physics</i> , 2011 , 134, 014707	3.9	11	
10	Nanoscale convection assisted self-assembly of nanoparticle monolayer. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4932		10	
9	Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction. <i>Journal of Materials Science and Technology</i> , 2020 , 43, 154-160	9.1	8	
8	Conformal Shell Amorphization of Nanoporous Ag-Bi for Efficient Formate Generation. <i>ACS Applied Materials & Mater</i>	9.5	7	
7	Photovoltaic properties of Pt/BiFeO3 thin film/fluorine-doped tin oxide capacitor. <i>Journal of Sol-Gel Science and Technology</i> , 2014 , 72, 74-79	2.3	6	
6	Active and selective CO2 electroreduction on a hierarchically nanoporous Au-Ag shell. <i>Chemical Physics Letters</i> , 2020 , 753, 137563	2.5	4	
5	Nanoporous Au-Ag shell with fast kinetics: integrating chemical and plasmonic catalysis. <i>Nanotechnology</i> , 2017 , 28, 425704	3.4	3	
4	Broadband unidirectional scattering in visible ranges and controllable hot-spot spatial transfer via a single nanoparticle. <i>Applied Surface Science</i> , 2020 , 528, 146489	6.7	3	
3	Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices. <i>Nanotechnology</i> , 2016 , 27, 405701	3.4	3	
2	Revealing the Competition between Defect-Trapped Exciton and Band-Edge Exciton Photoluminescence in Monolayer Hexagonal WS 2. <i>Advanced Optical Materials</i> ,2101971	8.1	1	
1	Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays. <i>Nanomaterials</i> , 2018 , 8,	5.4	1	