
Young Ha Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9102845/publications.pdf Version: 2024-02-01

YOUNG HA KIM

#	Article	IF	CITATIONS
1	The equatorial stratospheric semiannual oscillation and timeâ€mean winds in QBOi models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1593-1609.	1.0	12
2	Prediction of the quasiâ€biennial oscillation with a multiâ€model ensemble of <scp>QBO</scp> â€resolving models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1519-1540.	1.0	15
3	An evaluation of tropical waves and wave forcing of the QBO in the QBOi models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1541-1567.	1.0	29
4	Evaluation of the Quasiâ€Biennial Oscillation in global climate models for the SPARC QBOâ€initiative. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1459-1489.	1.0	41
5	Teleconnections of the Quasiâ€Biennial Oscillation in a multiâ€model ensemble of QBOâ€resolving models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1568-1592.	1.0	23
6	Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 233-251.	1.0	16
7	Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part II: Wave Intermittency Simulated with Convective Sources. Journals of the Atmospheric Sciences, 2021, 78, 1339-1357.	0.6	15
8	Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part I: Propagation Model Including Nondissipative Wave–Mean-Flow Interactions. Journals of the Atmospheric Sciences, 2021, 78, 1317-1338.	0.6	15
9	Interaction Between Stratospheric Kelvin Waves and Gravity Waves in the Easterly QBO Phase. Geophysical Research Letters, 2021, 48, e2021GL095226.	1.5	5
10	Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses. Atmospheric Chemistry and Physics, 2019, 19, 10027-10050.	1.9	15
11	Gravity Waves Associated with Jet/Front Systems. Part I: Diagnostics and their Correlations with GWs Revealed in High-Resolution Clobal Analysis Data. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 589-608.	1.3	5
12	Inertiaâ€Gravity Waves Revealed in Radiosonde Data at Jang Bogo Station, Antarctica (74°37â€2S, 164°13â€ Characteristics, Energy, and Momentum Flux. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,305.	² E): 1. 1.2	14
13	Dynamic Initialization for Whole Atmospheric Global Modeling. Journal of Advances in Modeling Earth Systems, 2018, 10, 2096-2120.	1.3	4
14	Subseasonal Prediction of Wintertime East Asian Temperature Based on Atmospheric Teleconnections. Journal of Climate, 2018, 31, 9351-9366.	1.2	11
15	Momentum Flux of Convective Gravity Waves Derived from an Offline Gravity Wave Parameterization. Part II: Impacts on the Quasi-Biennial Oscillation. Journals of the Atmospheric Sciences, 2018, 75, 3753-3775.	0.6	21
16	Total ozone characteristics associated with regional meteorology in West Antarctica. Atmospheric Environment, 2018, 195, 78-88.	1.9	3
17	Effects of Non-orographic Gravity Wave Drag on Seasonal and Medium-range Predictions in a Global Forecast Model. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 385-402.	1.3	13
18	Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geoscientific Model Development, 2018, 11, 1009-1032.	1.3	81

Young Ha Kim

#	Article	IF	CITATIONS
19	Meteor radar observations of vertically propagating lowâ€frequency inertiaâ€gravity waves near the southern polar mesopause region. Journal of Geophysical Research: Space Physics, 2017, 122, 4777-4800.	0.8	12
20	Momentum Flux of Convective Gravity Waves Derived from an Offline Gravity Wave Parameterization. Part I: Spatiotemporal Variations at Source Level. Journals of the Atmospheric Sciences, 2017, 74, 3167-3189.	0.6	31
21	Characteristics of gravity waves generated in the jet-front system in aÂbaroclinic instability simulation. Atmospheric Chemistry and Physics, 2016, 16, 4799-4815.	1.9	13
22	Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1065-1090.	1.2	39
23	Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmospheric Chemistry and Physics, 2015, 15, 6577-6587.	1.9	34
24	Impacts of introducing a convective gravityâ€wave parameterization upon the QBO in the Met Office Unified Model. Geophysical Research Letters, 2013, 40, 1873-1877.	1.5	41
25	Consistency between Fourier transform and small-volume few-wave decomposition for spectral and spatial variability of gravity waves above a typhoon. Atmospheric Measurement Techniques, 2012, 5, 1637-1651.	1.2	39
26	Gravity wave reflection and its influence on the consistency of temperature- and wind-based momentum fluxes simulated above Typhoon Ewiniar. Atmospheric Chemistry and Physics, 2012, 12, 10787-10795.	1.9	12
27	Influence of Gravity Waves in the Tropical Upwelling: WACCM Simulations. Journals of the Atmospheric Sciences, 2011, 68, 2599-2612.	0.6	23
28	Secondary waves generated by breaking of convective gravity waves in the mesosphere and their influence in the wave momentum flux. Journal of Geophysical Research, 2008, 113, .	3.3	38
29	Characteristics of inertioâ€gravity waves revealed in rawinsonde data observed in Korea during 20 August to 5 September 2002. Journal of Geophysical Research, 2007, 112, .	3.3	21