
Jonathan P Coles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9102664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry,the, 2020, 7, 875-882.	7.4	1,005
2	Hyperventilation following head injury: Effect on ischemic burden and cerebral oxidative metabolism*. Critical Care Medicine, 2007, 35, 568-578.	0.9	306
3	Effect of hyperventilation on cerebral blood flow in traumatic head injury: Clinical relevance and monitoring correlates*. Critical Care Medicine, 2002, 30, 1950-1959.	0.9	302
4	Incidence and Mechanisms of Cerebral Ischemia in Early Clinical Head Injury. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 202-211.	4.3	271
5	Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: Preliminary findings*. Critical Care Medicine, 2008, 36, 273-281.	0.9	207
6	Defining Ischemic Burden after Traumatic Brain Injury Using ¹⁵ 0 PET Imaging of Cerebral Physiology. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 191-201.	4.3	187
7	Correlation between Cerebral Blood Flow, Substrate Delivery, and Metabolism in Head Injury: A Combined Microdialysis and Triple Oxygen Positron Emission Tomography Study. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 735-745.	4.3	171
8	The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimer's and Dementia, 2016, 12, 538-545.	0.8	136
9	Amyloid Imaging With Carbon 11–Labeled Pittsburgh Compound B for Traumatic Brain Injury. JAMA Neurology, 2014, 71, 23.	9.0	132
10	Pathophysiologic Mechanisms of Cerebral Ischemia and Diffusion Hypoxia in Traumatic Brain Injury. JAMA Neurology, 2016, 73, 542.	9.0	125
11	Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 as Outcome Predictors in Traumatic Brain Injury. World Neurosurgery, 2016, 87, 8-20.	1.3	98
12	Intersubject Variability and Reproducibility of 15O PET Studies. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 48-57.	4.3	85
13	Does induced hypertension reduce cerebral ischaemia within the traumatized human brain?. Brain, 2004, 127, 2479-2490.	7.6	84
14	Human Serum Metabolites Associate With Severity and Patient Outcomes in Traumatic Brain Injury. EBioMedicine, 2016, 12, 118-126.	6.1	76
15	Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Are Not Specific Biomarkers for Mild CT-Negative Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 1427-1438.	3.4	76
16	Regional ischemia after head injury. Current Opinion in Critical Care, 2004, 10, 120-125.	3.2	70
17	Neuroimaging of Inflammation in Memory and Related Other Disorders (NIMROD) study protocol: a deep phenotyping cohort study of the role of brain inflammation in dementia, depression and other neurological illnesses. BMJ Open, 2017, 7, e013187.	1.9	65
18	Glycaemic control targets after traumatic brain injury: a systematic review and meta-analysis. Critical Care, 2018, 22, 11.	5.8	62

JONATHAN P COLES

#	Article	IF	CITATIONS
19	Synaptic Loss in Primary Tauopathies Revealed by [<scp>¹¹C</scp>] <scp>UCBâ€J</scp> Positron Emission Tomography. Movement Disorders, 2020, 35, 1834-1842.	3.9	61
20	A combined microdialysis and FDG-PET study of glucose metabolism in head injury. Acta Neurochirurgica, 2009, 151, 51-61.	1.7	60
21	Dynamic Changes in White Matter Abnormalities Correlate With Late Improvement and Deterioration Following TBI. Neurorehabilitation and Neural Repair, 2016, 30, 49-62.	2.9	59
22	Inter Subject Variability and Reproducibility of Diffusion Tensor Imaging within and between Different Imaging Sessions. PLoS ONE, 2013, 8, e65941.	2.5	58
23	Microstructural Basis of Contusion Expansion in Traumatic Brain Injury: Insights from Diffusion Tensor Imaging. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 855-862.	4.3	51
24	The Down syndrome brain in the presence and absence of fibrillar β-amyloidosis. Neurobiology of Aging, 2017, 53, 11-19.	3.1	50
25	Spatial and Temporal Pattern of Ischemia and Abnormal Vascular Function Following Traumatic Brain Injury. JAMA Neurology, 2020, 77, 339.	9.0	49
26	Early Derangements in Oxygen and Glucose Metabolism Following Head Injury: The Ischemic Penumbra and Pathophysiological Heterogeneity. Neurocritical Care, 2008, 9, 319-325.	2.4	46
27	Spectrum, risk factors and outcomes of neurological and psychiatric complications of COVID-19: a UK-wide cross-sectional surveillance study. Brain Communications, 2021, 3, fcab168.	3.3	33
28	Early Metabolic Characteristics of Lesion and Nonlesion Tissue after Head Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 965-975.	4.3	29
29	Integrated image analysis solutions for PET datasets in damaged brain. Journal of Clinical Monitoring and Computing, 2002, 17, 427-440.	1.6	23
30	Imaging of cerebral blood flow and metabolism. Current Opinion in Anaesthesiology, 2006, 19, 473-480.	2.0	22
31	Use of Diffusion Tensor Imaging to Assess the Impact of Normobaric Hyperoxia within At-Risk Pericontusional Tissue after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1622-1627.	4.3	22
32	Serum Metabolites Associated with Computed Tomography Findings after Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2673-2683.	3.4	20
33	Comparison of Inter Subject Variability and Reproducibility of Whole Brain Proton Spectroscopy. PLoS ONE, 2014, 9, e115304.	2.5	20
34	Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain, 2021, 144, 3492-3504.	7.6	19
35	Validation of a combined image derived input function and venous sampling approach for the quantification of [18F]GE-179 PET binding in the brain. NeuroImage, 2021, 237, 118194.	4.2	17
36	Pharmacological management of post-traumatic seizures in adults: current practice patterns in the UK and the Republic of Ireland. Acta Neurochirurgica, 2019, 161, 457-464.	1.7	14

JONATHAN P COLES

#	Article	IF	CITATIONS
37	Longitudinal trajectories of amyloid deposition, cortical thickness, and tau in Down syndrome: A deepâ€phenotyping case report. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 654-658.	2.4	13
38	Comment on " <i>In Vivo</i> [¹⁸ F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates†ACS Chemical Neuroscience, 2019, 10, 768-772.	3.5	11
39	Characterising neuropsychiatric disorders in patients with COVID-19 – Authors' reply. Lancet Psychiatry,the, 2020, 7, 934-935.	7.4	10
40	Normobaric hyperoxia does not improve derangements in diffusion tensor imaging found distant from visible contusions following acute traumatic brain injury. Scientific Reports, 2017, 7, 12419.	3.3	2
41	Cortical atrophy and amyloid and tau deposition in Down syndrome: A longitudinal study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2022, 14, e12288.	2.4	2
42	Support vector machine learning and diffusion-derived structural networks predict amyloid quantity and cognition in adults with Down's syndrome. Neurobiology of Aging, 2022, 115, 112-121.	3.1	2
43	Diffusion Hypoxia and/or Primary Mitochondrial Failure?—Reply. JAMA Neurology, 2016, 73, 1373.	9.0	1