Sarah Cianferani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9102536/publications.pdf Version: 2024-02-01

	147801	182427
3,724	31	51
citations	h-index	g-index
151	151	5163
docs citations	times ranked	citing authors
	3,724 citations 151 docs citations	3,724 citations 151 docs citations 151 times ranked

#	Article	IF	CITATIONS
1	Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nature Communications, 2020, 11, 3014.	12.8	162
2	Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics, 2020, 36, 3148-3155.	4.1	155
3	Innovative Native MS Methodologies for Antibody Drug Conjugate Characterization: High Resolution Native MS and IM-MS for Average DAR and DAR Distribution Assessment. Analytical Chemistry, 2014, 86, 10674-10683.	6.5	147
4	Adding a new separation dimension to MS and LC–MS: What is the utility of ion mobility spectrometry?. Journal of Separation Science, 2018, 41, 20-67.	2.5	140
5	Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysineâ€linked antibody drug conjugate. Protein Science, 2015, 24, 1210-1223.	7.6	113
6	Cuttingâ€edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. Journal of Mass Spectrometry, 2015, 50, 285-297.	1.6	109
7	Analytical characterization of biosimilar antibodies and Fc-fusion proteins. TrAC - Trends in Analytical Chemistry, 2013, 48, 81-95.	11.4	104
8	Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Review of Proteomics, 2016, 13, 157-183.	3.0	91
9	The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles. Cell Reports, 2018, 24, 973-986.e8.	6.4	79
10	An Online Four-Dimensional HIC×SEC-IM×MS Methodology for Proof-of-Concept Characterization of Antibody Drug Conjugates. Analytical Chemistry, 2018, 90, 1578-1586.	6.5	75
11	Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1086, 176-183.	2.3	69
12	Benchmarking quantitative label-free LC–MS data processing workflows using a complex spiked proteomic standard dataset. Journal of Proteomics, 2016, 132, 51-62.	2.4	68
13	Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, 2016, 15, 3998-4019.	3.7	66
14	Time Resolved Native Ion-Mobility Mass Spectrometry to Monitor Dynamics of IgG4 Fab Arm Exchange and "Bispecific―Monoclonal Antibody Formation. Analytical Chemistry, 2013, 85, 9785-9792.	6.5	62
15	The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nature Communications, 2018, 9, 2093.	12.8	59
16	Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. MAbs, 2017, 9, 801-811.	5.2	55
17	CBTF: New Amine-to-Thiol Coupling Reagent for Preparation of Antibody Conjugates with Increased Plasma Stability. Bioconjugate Chemistry, 2015, 26, 197-200.	3.6	53
18	Palladium atalyzed Chemoselective and Biocompatible Functionalization of Cysteineâ€Containing Molecules at Room Temperature. Chemistry - A European Journal, 2016, 22, 11365-11370.	3.3	51

#	Article	IF	CITATIONS
19	Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies. Analytical Chemistry, 2018, 90, 8865-8872.	6.5	51
20	A Novel Online Four-Dimensional SEC×SEC-IM×MS Methodology for Characterization of Monoclonal Antibody Size Variants. Analytical Chemistry, 2018, 90, 13929-13937.	6.5	49
21	Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 79-90.	2.3	48
22	Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Review of Proteomics, 2019, 16, 337-362.	3.0	47
23	Ethynylation of Cysteine Residues: From Peptides to Proteins in Vitro and in Living Cells. Angewandte Chemie - International Edition, 2020, 59, 10961-10970.	13.8	46
24	A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin. Oncotarget, 2017, 8, 2568-2584.	1.8	44
25	Recurrent activating mutations of PPARÎ ³ associated with luminal bladder tumors. Nature Communications, 2019, 10, 253.	12.8	44
26	A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. Journal of Proteomics, 2016, 134, 174-185.	2.4	41
27	The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. Journal of Hepatology, 2018, 69, 1099-1109.	3.7	40
28	Generic Hybrid Ligand Binding Assay Liquid Chromatography High-Resolution Mass Spectrometry-Based Workflow for Multiplexed Human Immunoglobulin G1 Quantification at the Intact Protein Level: Application to Preclinical Pharmacokinetic Studies. Analytical Chemistry, 2017, 89, 2628-2635.	6.5	39
29	Development and evaluation of β-galactosidase-sensitive antibody-drug conjugates. European Journal of Medicinal Chemistry, 2017, 142, 376-382.	5.5	38
30	Evolutionary insights into Trm112-methyltransferase holoenzymes involved in translation between archaea and eukaryotes. Nucleic Acids Research, 2018, 46, 8483-8499.	14.5	37
31	Deep Structural Analysis of RPAP3 and PIH1D1, Two Components of the HSP90 Co-chaperone R2TP Complex. Structure, 2018, 26, 1196-1209.e8.	3.3	36
32	Computational and Mass-Spectrometry-Based Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes 2 and 14. Journal of Proteome Research, 2015, 14, 3621-3634.	3.7	35
33	Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11033-E11042.	7.1	35
34	lon mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes. Analyst, The, 2015, 140, 7234-7245.	3.5	32
35	MetAP1 and MetAP2 drive cell selectivity for a potent anti-cancer agent in synergy, by controlling glutathione redox state. Oncotarget, 2016, 7, 63306-63323.	1.8	32
36	Development of a fast workflow to screen the charge variants of therapeutic antibodies. Journal of Chromatography A, 2017, 1498, 147-154.	3.7	31

#	Article	IF	CITATIONS
37	Acyl Fluorides: Fast, Efficient, and Versatile Lysine-Based Protein Conjugation via Plug-and-Play Strategy. Bioconjugate Chemistry, 2017, 28, 1452-1457.	3.6	31
38	Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nanoscale, 2017, 9, 9641-9658.	5.6	31
39	Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods. Data in Brief, 2016, 6, 286-294.	1.0	30
40	Soaking suggests "alternative facts― Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition. PLoS ONE, 2017, 12, e0175723.	2.5	30
41	Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Organic and Biomolecular Chemistry, 2018, 16, 1305-1311.	2.8	30
42	Determination of size variants by CE-SDS for approved therapeutic antibodies: Key implications of subclasses and light chain specificities. Journal of Pharmaceutical and Biomedical Analysis, 2020, 184, 113166.	2.8	30
43	Comparative Expression Study of the Endo–G Protein Coupled Receptor (GPCR) Repertoire in Human Glioblastoma Cancer Stem-like Cells, U87-MG Cells and Non Malignant Cells of Neural Origin Unveils New Potential Therapeutic Targets. PLoS ONE, 2014, 9, e91519.	2.5	28
44	Characterization of the N-Terminal Heterogeneities of Monoclonal Antibodies Using In-Gel Charge Derivatization of α-Amines and LC-MS/MS. Analytical Chemistry, 2015, 87, 3784-3790.	6.5	28
45	EB1-binding–myomegalin protein complex promotes centrosomal microtubules functions. Proceedings of the United States of America, 2017, 114, E10687-E10696.	7.1	28
46	Semi-synthesis of a HGF/SF kringle one (K1) domain scaffold generates a potent in vivo MET receptor agonist. Chemical Science, 2015, 6, 2110-2121.	7.4	26
47	Dual Data-Independent Acquisition Approach Combining Global HCP Profiling and Absolute Quantification of Key Impurities during Bioprocess Development. Analytical Chemistry, 2018, 90, 1241-1247.	6.5	26
48	Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS Journal, 2017, 284, 77-96.	4.7	25
49	Towards integrative structural mass spectrometry: Benefits from hybrid approaches. Methods, 2015, 89, 4-12.	3.8	24
50	Reduction–rebridging strategy for the preparation of ADPN-based antibody–drug conjugates. MedChemComm, 2018, 9, 827-830.	3.4	24
51	Synthesis and biological evaluation of 2.4 nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma cancer cells via the EGFR. Nanotechnology, 2019, 30, 184005.	2.6	24
52	Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology. Analytical Chemistry, 2020, 92, 10872-10880.	6.5	24
53	Activation mode of the eukaryotic m ² G ₁₀ tRNA methyltransferase Trm11 by its partner protein Trm112. Nucleic Acids Research, 2017, 45, gkw1271.	14.5	23
54	A Case Study to Identify the Drug Conjugation Site of a Site-Specific Antibody-Drug-Conjugate Using Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2419-2429.	2.8	23

#	Article	IF	CITATIONS
55	Structure/Function Analysis of Protein–Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly. Journal of Molecular Biology, 2015, 427, 2816-2839.	4.2	22
56	Pushing the limits of native MS: Online SEC-native MS for structural biology applications. International Journal of Mass Spectrometry, 2021, 461, 116502.	1.5	22
57	The intricate network between the p34 and p44 subunits is central to the activity of the transcription/DNA repair factor TFIIH. Nucleic Acids Research, 2017, 45, 10872-10883.	14.5	21
58	Formation of Mono- and Polynuclear Luminescent Lanthanide Complexes based on the Coordination of Preorganized Phosphonated Pyridines. Inorganic Chemistry, 2018, 57, 6095-6106.	4.0	21
59	How reversible are the effects of silver nanoparticles on macrophages? A proteomic-instructed view. Environmental Science: Nano, 2019, 6, 3133-3157.	4.3	21
60	Functional and Structural Insights of the Zinc-Finger HIT protein family members Involved in Box C/D snoRNP Biogenesis. Journal of Molecular Biology, 2016, 428, 2488-2506.	4.2	20
61	The use of generic surrogate peptides for the quantitative analysis of human immunoglobulin G1 in pre-clinical species with high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 1687-1699.	3.7	20
62	On the use of DNA as a linker in antibody-drug conjugates: synthesis, stability and in vitro potency. Scientific Reports, 2020, 10, 7691.	3.3	20
63	What Glues a Homodimer Together: Systematic Analysis of the Stabilizing Effect of an Aromatic Hot Spot in the Protein–Protein Interface of the tRNA-Modifying Enzyme Tgt. ACS Chemical Biology, 2015, 10, 1897-1907.	3.4	19
64	Multi-OMICS analyses unveil <i>STAT1</i> as a potential modifier gene in mevalonate kinase deficiency. Annals of the Rheumatic Diseases, 2018, 77, 1675-1687.	0.9	19
65	Automated linkage of proteins and payloads producing monodisperse conjugates. Chemical Science, 2020, 11, 1210-1215.	7.4	19
66	Toward Automation of Collision-Induced Unfolding Experiments through Online Size Exclusion Chromatography Coupled to Native Mass Spectrometry. Analytical Chemistry, 2020, 92, 12900-12908.	6.5	18
67	Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR–RXR. Nucleic Acids Research, 2020, 48, 9969-9985.	14.5	17
68	Molecular determinants of MED1 interaction with the DNA bound VDR–RXR heterodimer. Nucleic Acids Research, 2020, 48, 11199-11213.	14.5	17
69	Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data. Analytical Chemistry, 2020, 92, 10881-10890.	6.5	17
70	Glycan-Mediated Technology for Obtaining Homogeneous Site-Specific Conjugated Antibody–Drug Conjugates: Synthesis and Analytical Characterization by Using Complementary Middle-up LC/HRMS Analysis. Analytical Chemistry, 2020, 92, 8170-8177.	6.5	17
71	Investigating Ugi/Passerini Multicomponent Reactions for the Siteâ€5elective Conjugation of Native Trastuzumab**. Chemistry - A European Journal, 2020, 26, 13797-13805.	3.3	17
72	Optimized Sample Preparation and Data Processing of Data-Independent Acquisition Methods for the Robust Quantification of Trace-Level Host Cell Protein Impurities in Antibody Drug Products. Journal of Proteome Research, 2021, 20, 923-931.	3.7	17

#	Article	IF	CITATIONS
73	Intermolecular recognition of the non-coding RNA 7SK and HEXIM protein in perspective. Biochimie, 2015, 117, 63-71.	2.6	16
74	The H ₂ O ₂ -Resistant Fe–S Redox Switch MitoNEET Acts as a pH Sensor To Repair Stress-Damaged Fe–S Protein. Biochemistry, 2018, 57, 5616-5628.	2.5	16
75	VHH characterization. Comparison of recombinant with chemically synthesized antiâ€HER2 VHH. Protein Science, 2019, 28, 1865-1879.	7.6	16
76	State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals, 2021, 14, 498.	3.8	16
77	Upconversion in a d–f [RuYb ₃] Supramolecular Assembly. Journal of the American Chemical Society, 2022, 144, 13356-13365.	13.7	16
78	Step by Step Assembly of Polynuclear Lanthanide Complexes with a Phosphonated Bipyridine Ligand. Inorganic Chemistry, 2016, 55, 12962-12974.	4.0	15
79	Benchmarking sample preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative proteomics. Proteomics, 2016, 16, 2953-2961.	2.2	15
80	Toxoplasma gondii ROP16 kinase silences the cyclin B1 gene promoter by hijacking host cell UHRF1-dependent epigenetic pathways. Cellular and Molecular Life Sciences, 2020, 77, 2141-2156.	5.4	15
81	Middle Level IM–MS and CIU Experiments for Improved Therapeutic Immunoglobulin Subclass Fingerprinting. Analytical Chemistry, 2020, 92, 8827-8835.	6.5	14
82	Iron Stearate Structures: An Original Tool for Nanoparticles Design. Inorganic Chemistry, 2021, 60, 12445-12456.	4.0	14
83	Probing Supramolecular Interactions between a Crown Ether Appended Zinc Phthalocyanine and an Ammonium Group Appended to a C ₆₀ Derivative. Chemistry - A European Journal, 2016, 22, 2051-2059.	3.3	13
84	Structure-Based Identification of HIV-1 Nucleocapsid Protein Inhibitors Active against Wild-Type and Drug-Resistant HIV-1 Strains. ACS Chemical Biology, 2018, 13, 253-266.	3.4	13
85	High-Resolution IMS–MS to Assign Additional Disulfide Bridge Pairing in Complementarity-Determining Regions of an IgG4 Monoclonal Antibody. Journal of the American Society for Mass Spectrometry, 2021, 32, 2505-2512.	2.8	13
86	Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor. Frontiers in Endocrinology, 2017, 8, 140.	3.5	12
87	A Proteomic View of Cellular Responses to Anticancer Quinoline-Copper Complexes. Proteomes, 2019, 7, 26.	3.5	12
88	Structures of B.Âsubtilis Maturation RNases Captured on 50S Ribosome with Pre-rRNAs. Molecular Cell, 2020, 80, 227-236.e5.	9.7	12
89	MAPN: First-in-Class Reagent for Kinetically Resolved Thiol-to-Thiol Conjugation. Bioconjugate Chemistry, 2015, 26, 1863-1867.	3.6	11
90	The flexibility of a generic LC–MS/MS method for the quantitative analysis of therapeutic proteins based on human immunoglobulin G and related constructs in animal studies. Journal of Pharmaceutical and Biomedical Analysis, 2016, 131, 214-222.	2.8	11

#	Article	IF	CITATIONS
91	Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs, 2017, 9, 1317-1326.	5.2	11
92	Distinct roles of Pcf11 zinc-binding domains in pre-mRNA 3′-end processing. Nucleic Acids Research, 2017, 45, 10115-10131.	14.5	11
93	A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1. PLoS ONE, 2018, 13, e0208979.	2.5	11
94	The longer the worse: a combined proteomic and targeted study of the long-term <i>versus</i> short-term effects of silver nanoparticles on macrophages. Environmental Science: Nano, 2020, 7, 2032-2046.	4.3	11
95	Rab7-harboring vesicles are carriers of the transferrin receptor through the biosynthetic secretory pathway. Science Advances, 2021, 7, .	10.3	11
96	Stable isotopeâ€labelled morphine to study <i>in vivo</i> central and peripheral morphine glucuronidation and brain transport in tolerant mice. British Journal of Pharmacology, 2018, 175, 3844-3856.	5.4	10
97	Cytosolic Diffusion and Peptide-Assisted Nuclear Shuttling of Peptide-Substituted Circa 102 Gold Atom Nanoclusters in Living Cells. ACS Applied Nano Materials, 2018, 1, 4236-4246.	5.0	10
98	Swapping Interface Contacts in the Homodimeric tRNAâ€Guanine Transglycosylase: An Option for Functional Regulation. Angewandte Chemie - International Edition, 2018, 57, 10085-10090.	13.8	10
99	Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity. Proteomics, 2015, 15, 2851-2861.	2.2	9
100	VHH characterization.Recombinant VHHs: Production, characterization and affinity. Analytical Biochemistry, 2020, 589, 113491.	2.4	9
101	Homogeneous antibody-drug conjugates: DAR 2 anti-HER2 obtained by conjugation on isolated light chain followed by mAb assembly. MAbs, 2020, 12, 1702262.	5.2	9
102	(Thia)calixarenephosphonic Acids as Potent Inhibitors of the Nucleic Acid Chaperone Activity of the HIV-1 Nucleocapsid Protein with a New Binding Mode and Multitarget Antiviral Activity. ACS Infectious Diseases, 2020, 6, 687-702.	3.8	9
103	Combination of IM-Based Approaches to Unravel the Coexistence of Two Conformers on a Therapeutic Multispecific mAb. Analytical Chemistry, 2022, 94, 7981-7989.	6.5	9
104	SMART Digestâ,,¢ compared with pellet digestion for analysis of human immunoglobulin G1 in rat serum by liquid chromatography tandem mass spectrometry. Analytical Biochemistry, 2016, 501, 23-25.	2.4	8
105	Homodimer Architecture of QTRT2, the Noncatalytic Subunit of the Eukaryotic tRNA-Guanine Transglycosylase. Biochemistry, 2018, 57, 3953-3965.	2.5	8
106	A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genetics, 2021, 17, e1009492.	3.5	8
107	Morphine Binds Creatine Kinase B and Inhibits Its Activity. Frontiers in Cellular Neuroscience, 2018, 12, 464.	3.7	7
108	How Reversible Are the Effects of Fumed Silica on Macrophages? A Proteomics-Informed View. Nanomaterials, 2020, 10, 1939.	4.1	7

#	Article	IF	CITATIONS
109	Structural and Biochemical Investigation of the Heterodimeric Murine tRNA-Guanine Transglycosylase. ACS Chemical Biology, 2022, 17, 2229-2247.	3.4	7
110	Probing Protein Interaction Networks by Combining MS-Based Proteomics and Structural Data Integration. Journal of Proteome Research, 2020, 19, 2807-2820.	3.7	6
111	Temporal multiomic modeling reveals a B-cell receptor proliferative program in chronic lymphocytic leukemia. Leukemia, 2021, 35, 1463-1474.	7.2	6
112	Structural characterization of the yeast CF IA complex through a combination of mass spectrometry approaches. International Journal of Mass Spectrometry, 2017, 420, 57-66.	1.5	5
113	Combining labelâ€free and labelâ€based accurate quantifications with SWATHâ€MS: Comparison with SRM and PRM for the evaluation of bovine muscle type effects. Proteomics, 2021, 21, e2000214.	2.2	5
114	Proteo3Dnet: a web server for the integration of structural information with interactomics data. Nucleic Acids Research, 2021, 49, W567-W572.	14.5	5
115	A Confinementâ€Ðriven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media. Small, 2022, 18, e2200414.	10.0	5
116	Peptide deformylases from Vibrio parahaemolyticus phage and bacteria display similar deformylase activity and inhibitor binding clefts. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 348-355.	2.3	4
117	A Class of Valuable (Pro-)Activity-Based Protein Profiling Probes: Application to the Redox-Active Antiplasmodial Agent, Plasmodione. Jacs Au, 2021, 1, 669-689.	7.9	4
118	Multicentric Analyses of the CD148, CD180, and CD200 Combination for the Diagnosis of Mature B-Cell Neoplasm Using Flow Cytometry. Blood, 2015, 126, 2662-2662.	1.4	4
119	Does size matter? A proteomics-informed comparison of the effects of polystyrene beads of different sizes on macrophages. Environmental Science: Nano, 2022, 9, 2827-2840.	4.3	4
120	Quantitative analysis of hIgG1 in monkey serum by LC–MS/MS using mass spectrometric immunoassay. Bioanalysis, 2016, 8, 1035-1049.	1.5	3
121	Extended investigation of tube-gel sample preparation: a versatile and simple choice for high throughput quantitative proteomics. Scientific Reports, 2018, 8, 8260.	3.3	3
122	A Combined N-terminomics and Shotgun Proteomics Approach to Investigate the Responses of Human Cells to Rapamycin and Zinc at the Mitochondrial Level. Molecular and Cellular Proteomics, 2019, 18, 1085-1095.	3.8	3
123	The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein–Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. ACS Chemical Biology, 2020, 15, 3021-3029.	3.4	3
124	Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis. Journal of Proteomics, 2022, 250, 104389.	2.4	3
125	Repeated Exposure of Macrophages to Synthetic Amorphous Silica Induces Adaptive Proteome Changes and a Moderate Cell Activation. Nanomaterials, 2022, 12, 1424.	4.1	3
126	Culture medium associated changes in the core proteome of macrophages and in their responses to copper oxide nanoparticles. Proteomics, 2016, 16, 2864-2877.	2.2	2

#	Article	IF	CITATIONS
127	Austausch der Proteinkontaktflähen in der homodimeren tRNAâ€Guaninâ€Transglycosylase: ein Weg der funktionellen Regulation. Angewandte Chemie, 2018, 130, 10242-10247.	2.0	2
128	Fast Afucosylation Profiling of Clycoengineered Antibody Subunits by Middle-Up Mass Spectrometry. Methods in Molecular Biology, 2021, 2271, 73-83.	0.9	2
129	A proteomic-informed view of the changes induced by loss of cellular adherence: The example of mouse macrophages. PLoS ONE, 2021, 16, e0252450.	2.5	2
130	Drug Loading and Distribution of ADCs After Reduction or IdeS Digestion and Reduction. Methods in Molecular Biology, 2020, 2078, 187-195.	0.9	2
131	Analysis of ADCs by Native Mass Spectrometry. Methods in Molecular Biology, 2020, 2078, 197-211.	0.9	2
132	Strongly Adhesive and Antimicrobial Peptide-Loaded, Alginate–Catechol-Based Gels for Application against Periimplantitis. Applied Sciences (Switzerland), 2021, 11, 10050.	2.5	2
133	A Direct Oneâ€Pot Synthesis of Asymmetric Dehydrobenzopyrido[12]annulenes and Their Physicochemical Properties. European Journal of Organic Chemistry, 2017, 2017, 4625-4632.	2.4	1
134	An Investigation into the Stephens–Castro Synthesis of Dehydrotriaryl[12]annulenes: Factors Influencing the Cyclotrimerization. European Journal of Organic Chemistry, 2019, 2019, 6783-6795.	2.4	1
135	Structural studies of RNase M5 reveal two-metal-ion supported two-step dsRNA cleavage for 5S rRNA maturation. RNA Biology, 2021, 18, 1-11.	3.1	1
136	A proteomic view of cellular responses of macrophages to copper when added as ion or as copper-polyacrylate complex. Journal of Proteomics, 2021, 239, 104178.	2.4	1
137	Hands on Native Mass Spectrometry Analysis of Multi-protein Complexes. Methods in Molecular Biology, 2021, 2247, 173-191.	0.9	1
138	Frontispiece: Investigating Ugi/Passerini Multicomponent Reactions for the Siteâ€Selective Conjugation of Native Trastuzumab. Chemistry - A European Journal, 2020, 26, .	3.3	0
139	Insight on the Impact of the Reduction Step on the Siteâ€Directed Conjugation of an Antiâ€HER2 Cysteineâ€Engineered Antibody. ChemistrySelect, 2020, 5, 3187-3190.	1.5	0
140	Strong Cell Surface Expression of the Toll-Like Receptor Homolog CD180 Identifies Circulating Cells of Marginal Zone Lymphoma From Other B-Cell Malignancies. Blood, 2012, 120, 1542-1542.	1.4	0
141	Interest of the CD148, CD180 and CD200 Combination in Flow Cytometry Analyses for Mature B-Cell Neoplasms Diagnosis. Blood, 2014, 124, 5407-5407.	1.4	0
142	Bicyclo[6.1.0]nonyne carboxylic acid for the production of stable molecular probes. RSC Advances, 2021, 11, 36777-36780.	3.6	0
143	Probing the mechanism of peroxiredoxin decamer interaction with its reductase sulfiredoxin from the single molecule to the solution scale. Nanoscale Horizons, 2022, , .	8.0	Ο