
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9102071/publications.pdf Version: 2024-02-01

FIRE DE ROUVNE

#	Article	IF	CITATIONS
1	Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood, 2014, 124, 555-566.	0.6	371
2	The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 43992-44004.	0.8	127
3	Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia, 2007, 21, 1580-1584.	3.3	124
4	Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer Journal, 2018, 8, 105.	2.8	113
5	Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Letters, 2016, 377, 17-24.	3.2	106
6	Myeloid-Derived Suppressor Cells as Therapeutic Target in Hematological Malignancies. Frontiers in Oncology, 2014, 4, 349.	1.3	92
7	IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood, 2010, 115, 2430-2440.	0.6	88
8	Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood, 2012, 119, 826-837.	0.6	78
9	Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia, 2014, 28, 444-447.	3.3	68
10	Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma. Cancers, 2014, 6, 1363-1381.	1.7	68
11	Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia, 2012, 26, 2424-2428.	3.3	67
12	Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget, 2016, 7, 6521-6537.	0.8	66
13	Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 10532-10547.	0.8	64
14	The Microenvironment and Molecular Biology of the Multiple Myeloma Tumor. Advances in Cancer Research, 2011, 110, 19-42.	1.9	61
15	Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget, 2016, 7, 38927-38945.	0.8	53
16	Metabolic Features of Multiple Myeloma. International Journal of Molecular Sciences, 2018, 19, 1200.	1.8	53
17	Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. DMM Disease Models and Mechanisms, 2012, 5, 763-771.	1.2	51
18	Tumourâ€associated macrophageâ€mediated survival of myeloma cells through <scp>STAT3</scp> activation. Journal of Pathology, 2017, 241, 534-546.	2.1	50

#	Article	IF	CITATIONS
19	RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response. Leukemia, 2017, 31, 1706-1714.	3.3	49
20	Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway. Cancer Letters, 2019, 442, 233-241.	3.2	49
21	Synergistic Induction of Apoptosis in Multiple Myeloma Cells by Bortezomib and Hypoxia-Activated Prodrug TH-302, <i>In Vivo</i> and <i>In Vitro</i> . Molecular Cancer Therapeutics, 2013, 12, 1763-1773.	1.9	48
22	The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma. Oncotarget, 2014, 5, 3115-3129.	0.8	48
23	Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple myeloma. Biochemical and Biophysical Research Communications, 2012, 428, 518-524.	1.0	47
24	Epigenetic Silencing of the Tetraspanin CD9 during Disease Progression in Multiple Myeloma Cells and Correlation with Survival. Clinical Cancer Research, 2008, 14, 2918-2926.	3.2	46
25	Multifunctional Role of Matrix Metalloproteinases in Multiple Myeloma. American Journal of Pathology, 2004, 165, 869-878.	1.9	44
26	Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma. Cancers, 2013, 5, 430-461.	1.7	43
27	Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell proliferation. Leukemia, 2012, 26, 1402-1405.	3.3	42
28	Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion. Cancer Immunology Research, 2017, 5, 839-846.	1.6	41
29	The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget, 2016, 7, 48732-48752.	0.8	40
30	The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget, 2017, 8, 90501-90520.	0.8	39
31	The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Frontiers in Oncology, 2018, 8, 566.	1.3	39
32	The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Cancers, 2019, 11, 1823.	1.7	36
33	Kinome expression profiling to target new therapeutic avenues in multiple myeloma. Haematologica, 2020, 105, 784-795.	1.7	33
34	Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget, 2016, 7, 4062-4076.	0.8	33
35	Tumor-initiating capacity of CD138â~' and CD138+ tumor cells in the 5T33 multiple myeloma model. Leukemia, 2012, 26, 1436-1439.	3.3	31
36	DNMTi/HDACi combined epigenetic targeted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells. British Journal of Cancer, 2018, 118, 1062-1073.	2.9	30

#	Article	IF	CITATIONS
37	Both mucosal-associated invariant and natural killer T-cell deficiency in multiple myeloma can be countered by PD-1 inhibition. Haematologica, 2017, 102, e266-e270.	1.7	28
38	Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Research, 2018, 78, 1155-1168.	0.4	27
39	Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncolmmunology, 2018, 7, e1484981.	2.1	26
40	Leptin receptor antagonism of iNKT cell function: a novel strategy to combat multiple myeloma. Leukemia, 2017, 31, 2678-2685.	3.3	25
41	<i>In vivo</i> treatment with epigenetic modulating agents induces transcriptional alterations associated with prognosis and immunomodulation in multiple myeloma. Oncotarget, 2015, 6, 3319-3334.	0.8	25
42	Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. International Journal of Molecular Sciences, 2022, 23, 904.	1.8	25
43	Endothelial cell-driven regulation of CD9 or motility-related protein-1 expression in multiple myeloma cells within the murine 5T33MM model and myeloma patients. Leukemia, 2006, 20, 1870-1879.	3.3	24
44	Preclinical Evaluation of Invariant Natural Killer T Cells in the 5T33 Multiple Myeloma Model. PLoS ONE, 2013, 8, e65075.	1.1	24
45	Large double copy vectors are functional but show a size-dependent decline in transduction efficiency. Journal of Biotechnology, 2010, 150, 37-40.	1.9	23
46	Thymosin Â4 has tumor suppressive effects and its decreased expression results in poor prognosis and decreased survival in multiple myeloma. Haematologica, 2010, 95, 163-167.	1.7	22
47	G9a/GLP targeting in MM promotes autophagy-associated apoptosis and boosts proteasome inhibitor–mediated cell death. Blood Advances, 2021, 5, 2325-2338.	2.5	19
48	AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma. Cancers, 2019, 11, 1727.	1.7	18
49	In Search of the Most Suitable Lentiviral shRNA System. Current Gene Therapy, 2009, 9, 192-211.	0.9	16
50	The HDAC Inhibitor LBH589 Enhances the Antimyeloma Effects of the IGF-1RTK Inhibitor Picropodophyllin. Clinical Cancer Research, 2012, 18, 2230-2239.	3.2	16
51	The genetic landscape of 5T models for multiple myeloma. Scientific Reports, 2018, 8, 15030.	1.6	15
52	The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget, 2014, 5, 11193-11208.	0.8	15
53	Pyrroline-5-Carboxylate Reductase 1: a novel target for sensitizing multiple myeloma cells to bortezomib by inhibition of PRAS40-mediated protein synthesis. Journal of Experimental and Clinical Cancer Research, 2022, 41, 45.	3.5	13
54	Stimulation of invariant natural killer T cells by αâ€Galactosylceramide activates the <scp>JAK</scp> â€ <scp>STAT</scp> pathway in endothelial cells and reduces angiogenesis in the 5T33 multiple myeloma model. British Journal of Haematology, 2014, 167, 651-663.	1.2	12

#	Article	IF	CITATIONS
55	The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. British Journal of Cancer, 2019, 120, 1137-1146.	2.9	12
56	A distinct metabolic response characterizes sensitivity to EZH2 inhibition in multiple myeloma. Cell Death and Disease, 2021, 12, 167.	2.7	12
57	Targeting the methyltransferase SETD8 impairs tumor cell survival and overcomes drug resistance independently of p53 status in multiple myeloma. Clinical Epigenetics, 2021, 13, 174.	1.8	11
58	System Xcâ^' inhibition blocks bone marrow-multiple myeloma exosomal crosstalk, thereby countering bortezomib resistance. Cancer Letters, 2022, 535, 215649.	3.2	11
59	Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients. PLoS ONE, 2016, 11, e0154256.	1.1	8
60	Maternal embryonic leucine zipper kinase is a novel target for diffuse large B cell lymphoma and mantle cell lymphoma. Blood Cancer Journal, 2019, 9, 87.	2.8	7
61	Myeloma Cells and Their Interactions With the Bone Marrow Endothelial Cells. Current Immunology Reviews, 2007, 3, 41-55.	1.2	6
62	The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Frontiers in Genetics, 2019, 10, 740.	1.1	5
63	Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget, 2017, 8, 52016-52025.	0.8	5
64	The Effects of Forodesine in Murine and Human Multiple Myeloma Cells. Advances in Hematology, 2010, 2010, 1-8.	0.6	4
65	Myeloid Derived Suppressor Cell Mediated AMPK Activation Regulates Multiple Myeloma Cell Survival. Blood, 2014, 124, 2009-2009.	0.6	3
66	Exosomes Play a Key Role in Multiple Myeloma Bone Disease and Tumor Development. Blood, 2018, 132, 4484-4484.	0.6	3
67	Inhibition of the Protein Arginine Methyltransferase PRMT5 in High-Risk Multiple Myeloma as a Novel Treatment Approach. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
68	The Exosomal Transfer of Acid Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Blood, 2019, 134, 3058-3058.	0.6	2
69	Regulation of Bim Expression by IGF-1 in the 5T33MM Murine Model for Multiple Myeloma Blood, 2007, 110, 3512-3512.	0.6	2
70	Epigenetic Regulation of Multiple Myeloma Within its Bone Marrow Microenvironment. Clinical Lymphoma and Myeloma, 2009, 9, S29-S30.	1.4	1
71	RAS Association Domain Family Member 4 (RASSF4): A New Potent Tumor Suppressor in Multiple Myeloma. Blood, 2016, 128, 2057-2057.	0.6	1
72	The Role of Notch Signaling in Multiple Myeloma. , 2013, , 77-95.		1

#	Article	IF	CITATIONS
73	Targeting the Anaphase Promoting Complex/Cyclosome (APC/C) in Multiple Myeloma. Blood, 2014, 124, 2097-2097.	0.6	1
74	MCL1 Inhibitors in Multiple Myeloma. Blood, 2019, 134, SCI-12-SCI-12.	0.6	1
75	Tasquinimod Targets Immunosuppressive Myeloid Cells, Increases Osteogenesis and Has Direct Anti-Myeloma Effects By Inhibiting c-Myc Expression in Vitro and In Vivo. Blood, 2021, 138, 1594-1594.	0.6	1
76	Decreased Thymosin Beta 4 Expression Results in Poor Prognosis and Decreased Survival in Multiple Myeloma Blood, 2008, 112, 1703-1703.	0.6	0
77	Involvement of Dll1/Notch Interaction In MM Drug Resistance, Clonogenic Growth and In Vivo Engraftment. Blood, 2010, 116, 2966-2966.	0.6	0
78	Epigenetic Regulation of Myeloma Within Its Bone Marrow Microenvironment. , 2013, , 255-282.		0
79	Preclinical Evaluation of Invariant Natural Killer T-Cells in the 5T33 Multiple Myeloma Model. Blood, 2012, 120, 938-938.	0.6	0
80	Dll1/Notch Interaction Contributes to a Decreased Sensitivity of Myeloma Cells to Bortezomib. Blood, 2012, 120, 1840-1840.	0.6	0
81	Bone Marrow Stromal Cell-Derived Exosomes Facilitate Multiple Myeloma Cell Survival Through Inhibition Of The JNK Pathway. Blood, 2013, 122, 679-679.	0.6	0
82	The in vivo Transcriptional Response Towards Epigenetic Modulating Agents in Multiple Myeloma. Blood, 2014, 124, 3375-3375.	0.6	0
83	The Crosstalk Between Leptin Receptor Activation and iNKT Mediated Anti-Tumor Immunity in Multiple Myeloma. Blood, 2016, 128, 2075-2075.	0.6	0
84	Targeting S100A9 Interactions in the Multiple Myeloma Bone Marrow Environment Reduces Angiogenesis and Tumor Growth. Blood, 2016, 128, 3248-3248.	0.6	0
85	SET8 Is a Potential Therapeutic Target in MM. Blood, 2016, 128, 4435-4435.	0.6	0
86	Abstract 2120: Inhibition of multiple myeloma exosomes prevents bone loss and reduces tumor growth. , 2018, , .		0
87	Receptor Tyrosine Kinase AXL: A Potential Strategy to Counter Immune Suppression and Dormancy in Multiple Myeloma. Blood, 2019, 134, 4335-4335.	0.6	0
88	Pyrroline-5-Carboxylate Reductase 1: A Novel Target for Sensitizing Myeloma to Cytotoxic Agents By Inhibition of PRAS40-Mediated Protein Synthesis. Blood, 2021, 138, 1574-1574.	0.6	0