Jungsoo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9101920/publications.pdf

Version: 2024-02-01

279701 254106 2,540 45 23 43 h-index citations g-index papers 47 47 47 1814 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Workspace satisfaction: The privacy-communication trade-off inÂopen-plan offices. Journal of Environmental Psychology, 2013, 36, 18-26.	2.3	411
2	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	3.0	279
3	Nonlinear relationships between individual IEQ factors and overall workspace satisfaction. Building and Environment, 2012, 49, 33-40.	3.0	216
4	Gender differences in office occupant perception of indoor environmental quality (IEQ). Building and Environment, 2013, 70, 245-256.	3.0	181
5	Adaptive thermal comfort in Australian school classrooms. Building Research and Information, 2015, 43, 383-398.	2.0	158
6	Desk ownership in the workplace: The effect of non-territorial working on employee workplace satisfaction, perceived productivity and health. Building and Environment, 2016, 103, 203-214.	3.0	120
7	Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment, 2018, 127, 13-22.	3.0	114
8	BOSSA: a multidimensional post-occupancy evaluation tool. Building Research and Information, 2016, 44, 214-228.	2.0	87
9	Understanding patterns of adaptive comfort behaviour in the Sydney mixed-mode residential context. Energy and Buildings, 2017, 141, 274-283.	3.1	86
10	Residential adaptive comfort in a humid subtropical climateâ€"Sydney Australia. Energy and Buildings, 2018, 158, 1296-1305.	3.1	85
11	Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings. Building and Environment, 2018, 135, 1-9.	3.0	69
12	Evaluating assumptions of scales for subjective assessment of thermal environments $\hat{a} \in \text{``Do laypersons}$ perceive them the way, we researchers believe? Energy and Buildings, 2020, 211, 109761.	3.1	68
13	Impact of different building ventilation modes on occupant expectations ofÂtheÂmain IEQ factors. Building and Environment, 2012, 57, 184-193.	3.0	64
14	Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate. Building and Environment, 2019, 165, 106393.	3.0	56
15	Thermal sensitivity of occupants in different building typologies: The Griffiths Constant is a Variable. Energy and Buildings, 2019, 200, 11-20.	3.1	53
16	Thermal comfort in a mixed-mode building: Are occupants more adaptive?. Energy and Buildings, 2019, 203, 109436.	3.1	50
17	Residential adaptive comfort in a humid continental climate – Tianjin China. Energy and Buildings, 2018, 170, 115-121.	3.1	47
18	Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates. Building and Environment, 2020, 176, 106868.	3.0	40

#	Article	IF	CITATIONS
19	The key local segments of human body for personalized heating and cooling. Journal of Thermal Biology, 2019, 81, 118-127.	1.1	32
20	Defining the thermal sensitivity (Griffiths constant) of building occupants in the Korean residential context. Energy and Buildings, 2020, 208, 109648.	3.1	30
21	Auditory distraction in open-plan office environments: The effect of multi-talker acoustics. Applied Acoustics, 2017, 126, 68-80.	1.7	29
22	Optimal clothing insulation in naturally ventilated buildings. Building and Environment, 2019, 154, 200-210.	3.0	27
23	Is mixed-mode ventilation a comfortable low-energy solution? A literature review. Building and Environment, 2021, 205, 108215.	3.0	27
24	A data-driven analysis of occupant workspace dissatisfaction. Building and Environment, 2021, 205, 108270.	3.0	21
25	The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 2019, 6, 289.	2.4	19
26	The impact of occupant's thermal sensitivity on adaptive thermal comfort model. Building and Environment, 2022, 207, 108517.	3.0	19
27	Sound in occupied open-plan offices: Objective metrics with a review of historical perspectives. Applied Acoustics, 2021, 177, 107943.	1.7	17
28	Creating household occupancy and energy behavioural profiles using national time use survey data. Energy and Buildings, 2021, 252, 111440.	3.1	14
29	Indoor environment and adaptive thermal comfort models in residential buildings in Tianjin, China. Procedia Engineering, 2017, 205, 1627-1634.	1.2	13
30	Quantifying householder tolerance of thermal discomfort before turning on air-conditioner. Energy and Buildings, 2020, 211, 109797.	3.1	13
31	Reliability and repeatability of ISO 3382-3 metrics based on repeated acoustic measurements in open-plan offices. Applied Acoustics, 2019, 150, 138-146.	1.7	11
32	Study on the influence of climatic thermal exposure environment changed from cold to hot on human thermal preference. Building and Environment, 2022, 207, 108430.	3.0	11
33	Comparison of residential thermal comfort in two different climates in Australia. Building and Environment, 2022, 211, 108706.	3.0	11
34	The colours of comfort: From thermal sensation to person-centric thermal zones for adaptive building strategies. Energy and Buildings, 2020, 216, 109936.	3.1	10
35	Effect of adaptive opportunity on cognitive performance in warm environments. Science of the Total Environment, 2022, 823, 153698.	3.9	10
36	Identification of Environmental and Contextual Driving Factors of Air Conditioning Usage Behaviour in the Sydney Residential Buildings. Buildings, 2021, $11,122.$	1.4	9

#	Article	IF	CITATIONS
37	Thermoregulatory and cardiovascular responses to up-step change transient thermal environments: A risk factor in individuals with prosthetic heart valves. Building and Environment, 2022, 212, 108852.	3.0	7
38	Developing a window behaviour model incorporating A/C operation states. Building and Environment, 2022, 214, 108953.	3.0	7
39	Study on adaptive comfort behaviours in mixed-mode residential buildings in Tianjin, China. Indoor and Built Environment, 2022, 31, 777-787.	1.5	5
40	Semantic discrepancies between Korean and English versions of the ASHRAE sensation scale. Building and Environment, 2022, 221, 109343.	3.0	5
41	Non-uniform distribution of clothing insulation as a behavioral adaptation strategy and its effect on predicted thermal sensation in hot and humid environments. Energy and Buildings, 2022, 271, 112310.	3.1	3
42	Thermal Comfort Inside and Outside Buildings. , 2016, , 89-99.		2
43	Ventilation mode effect on thermal comfort in a mixed mode building. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042029.	0.3	2
44	On the temporal dimension of adaptive thermal comfort mechanisms in residential buildings. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042071.	0.3	2
45	Effect of Different HVAC Control Strategies on Thermal Comfort and Adaptive Behavior in High-Rise Apartments. Sustainability, 2021, 13, 11767.	1.6	0