Thorvaldur Thordarson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9101707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recurrent outburst floods and explosive volcanism during the Younger Dryas–Early Holocene deglaciation in south Iceland: evidence from a lacustrine record. Journal of Quaternary Science, 2022, 37, 1006-1023.	2.1	6
2	Linking lava morphologies to effusion rates for the 2014–2015 Holuhraun lava flow field, Iceland. Geology, 2022, 50, 71-75.	4.4	3
3	Quantifying the Waterâ€toâ€Melt Mass Ratio and Its Impact on Eruption Plumes During Explosive Hydromagmatic Eruptions. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	6
4	Characteristics of Sub-Aerially Emplaced Pyroclasts in the Surtsey Eruption Deposits: Implications for Diverse Surtseyan Eruptive Styles. Geosciences (Switzerland), 2022, 12, 79.	2.2	2
5	Crowd-sourcing observations of volcanic eruptions during the 2021 Fagradalsfjall and Cumbre Vieja events. Nature Communications, 2022, 13, 2611.	12.8	5
6	Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland. Nature Communications, 2022, 13, .	12.8	15
7	Geomorphological characterization of the 2014–2015 Holuhraun lava flow-field in Iceland. Journal of Volcanology and Geothermal Research, 2021, 419, 107278.	2.1	17
8	The explosive, basaltic Katla eruption in 1918, south Iceland, II: Isopach map, ice cap deposition of tephra and layer volume. Jokull, 2021, 71, 21-38.	0.1	2
9	The Saksunarvatn Ash and the G10ka series tephra. Review and current state of knowledge. Quaternary Geochronology, 2020, 56, 101041.	1.4	19
10	Temporal and spatial evolution of the Neogene age Breiðdalur central volcano through 39Ar/40Ar and U-Pb age determination. Journal of Volcanology and Geothermal Research, 2020, 404, 107006.	2.1	2
11	Lava–water interaction and hydrothermal activity within the 2014–2015 Holuhraun Lava Flow Field, Iceland. Journal of Volcanology and Geothermal Research, 2020, 408, 107100.	2.1	6
12	Lava Flow Roughness on the 2014–2015 Lava Flow-Field at Holuhraun, Iceland, Derived from Airborne LiDAR and Photogrammetry. Geosciences (Switzerland), 2020, 10, 125.	2.2	3
13	Marker tephra in Haukadalsvatn lake sediment: A key to the Holocene tephra stratigraphy of northwest Iceland. Quaternary Science Reviews, 2019, 219, 154-170.	3.0	10
14	The 2014–2015 Lava Flow Field at Holuhraun, Iceland: Using Airborne Hyperspectral Remote Sensing for Discriminating the Lava Surface. Remote Sensing, 2019, 11, 476.	4.0	12
15	Signature of deep mantle melting in South Iceland olivine. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	16
16	The onset of neoglaciation in Iceland and the 4.2 ka event. Climate of the Past, 2019, 15, 25-40.	3.4	38
17	Formation of segregation structures in Hafnarhraun pÄhoehoe lobe, SW Iceland: a window into crystal–melt separation in basaltic magma. Bulletin of Volcanology, 2019, 81, 1.	3.0	5
18	Driving mechanisms of subaerial and subglacial explosive episodes during the 10th century EldgjÃ; fissure eruption, southern Iceland. Volcanica, 2019, 2, 129-150.	1.8	14

#	Article	IF	CITATIONS
19	Crustal magma storage and fractionation of Eyjafjallajökull ankaramites, South Iceland. Jokull, 2019, 69, 83-102.	0.1	5
20	Provenance, stratigraphy and chronology of Holocene tephra from Vestfirðir, Iceland. Quaternary Geochronology, 2018, 46, 59-76.	1.4	30
21	Total grain-size distribution of four subplinian–Plinian tephras from Hekla volcano, Iceland: Implications for sedimentation dynamics and eruption source parameters. Journal of Volcanology and Geothermal Research, 2018, 357, 25-38.	2.1	7
22	Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the TungnaÃ; lava sequence (Iceland): implications for flow correlation and ages. Bulletin of Volcanology, 2018, 80, 1.	3.0	17
23	Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland. Bulletin of Volcanology, 2018, 80, 1.	3.0	11
24	The 1845 Hekla eruption: Grain-size characteristics of a tephra layer. Journal of Volcanology and Geothermal Research, 2018, 350, 33-46.	2.1	14
25	Assessing Impact to Infrastructures Due to Tephra Fallout From Öræfajökull Volcano (Iceland) by Using a Scenario-Based Approach and a Numerical Model. Frontiers in Earth Science, 2018, 6, .	1.8	12
26	Climatic control on Icelandic volcanic activity during the mid-Holocene: COMMENT. Geology, 2018, 46, e443-e443.	4.4	5
27	Variance of the Flexure Model Predictions With Rejuvenated Volcanism at KÄ«lauea Point, Kauaâ€~i, Hawaiâ€~i. Frontiers in Earth Science, 2018, 6, .	1.8	6
28	New Insights for Detecting and Deriving Thermal Properties of Lava Flow Using Infrared Satellite during 2014–2015 Effusive Eruption at Holuhraun, Iceland. Remote Sensing, 2018, 10, 151.	4.0	19
29	Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	38
30	Magmatic crystal records in time, space, and process, causatively linked with volcanic unrest. Earth and Planetary Science Letters, 2018, 493, 231-241.	4.4	47
31	The Volume of Lava Erupted During the 2014 to 2015 Eruption at Holuhraun, Iceland: A Comparison Between Satellite―and Groundâ€Based Measurements. Journal of Geophysical Research: Solid Earth, 2018, 123, 5412-5426.	3.4	28
32	Fragmentation mechanisms associated with explosive lava–water interactions in a lacustrine environment. Bulletin of Volcanology, 2017, 79, 1.	3.0	17
33	Rootless tephra stratigraphy and emplacement processes. Bulletin of Volcanology, 2017, 79, 11.	3.0	16
34	The opening subplinian phase of the Hekla 1991 eruption: properties of the tephra fall deposit. Bulletin of Volcanology, 2017, 79, 1.	3.0	11
35	The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland. Bulletin of Volcanology, 2017, 79, 1.	3.0	45
36	Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 2017, 546, 485-491.	27.8	191

#	Article	IF	CITATIONS
37	Multiple coincident eruptive seismic tremor sources during the 2014–2015 eruption at Holuhraun, Iceland. Journal of Geophysical Research: Solid Earth, 2017, 122, 2972-2987.	3.4	27
38	Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland. Geochimica Et Cosmochimica Acta, 2017, 205, 100-118.	3.9	38
39	Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. Journal of Volcanology and Geothermal Research, 2017, 340, 155-169.	2.1	112
40	PÄhoehoe, â€~aâ€~Ä• and block lava: an illustrated history of the nomenclature. Bulletin of Volcanology, 2017, 79, 1.	3.0	44
41	Message in a stainless steel bottle thrown into deep geological time. Gondwana Research, 2017, 52, 139-141.	6.0	3
42	Translations of volcanological terms: cross-cultural standards for teaching, communication, and reporting. Bulletin of Volcanology, 2017, 79, 1.	3.0	7
43	Atmospheric processes affecting the separation of volcanic ash and SO ₂ in volcanic eruptions: inferences from the May 2011 GrĀmsvA¶tnĀeruption. Atmospheric Chemistry and Physics, 2017, 17, 10709-10732.	4.9	38
44	Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples. Environmental Health, 2017, 16, 98.	4.0	19
45	REJUVENATION STAGE VOLCANIC SUCCESSION AT LAEO KILAUEA, KAUAI, HAWAII. , 2017, , .		0
46	Conclusion: recommendations and findings of the RED SEED working group. Geological Society Special Publication, 2016, 426, 567-648.	1.3	12
47	The architecture and shallow conduits of Laki-type pyroclastic cones: insights into a basaltic fissure eruption. Bulletin of Volcanology, 2016, 78, 1.	3.0	18
48	Postglacial eruptive history of the Askja region, North Iceland. Bulletin of Volcanology, 2016, 78, 1.	3.0	16
49	Degassing and magma mixing during the eruption of Surtsey Volcano (Iceland, 1963–1967): the signatures of a dynamic and discrete rift propagation event. Bulletin of Volcanology, 2016, 78, 1.	3.0	15
50	Dispersal of key subplinian–Plinian tephras from Hekla volcano, Iceland: implications for eruption source parameters. Bulletin of Volcanology, 2016, 78, 1.	3.0	15
51	Shallow conduit processes during the ad 1158 explosive eruption of Hekla volcano, Iceland. Bulletin of Volcanology, 2016, 78, 1.	3.0	3
52	Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 EyjafjallajĶkull eruption. Bulletin of Volcanology, 2016, 78, 1.	3.0	18
53	Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe–Mg diffusion in olivine. Earth and Planetary Science Letters, 2016, 439, 58-70.	4.4	59
54	Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nature Geoscience, 2016, 9, 77-82.	12.9	92

#	Article	IF	CITATIONS
55	UNDERSTANDING FLOOD LAVAS: THE SAGA CONTINUES. , 2016, , .		0
56	Satellite detection, longâ€range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). Journal of Geophysical Research D: Atmospheres, 2015, 120, 9739-9757.	3.3	98
57	MeMoVolc consensual document: a review of cross-disciplinary approaches to characterizing small explosive magmatic eruptions. Bulletin of Volcanology, 2015, 77, 1.	3.0	22
58	Diffusive over-hydration of olivine-hosted melt inclusions. Earth and Planetary Science Letters, 2015, 425, 168-178.	4.4	49
59	Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash. Atmospheric Measurement Techniques, 2015, 8, 2069-2091.	3.1	58
60	The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100Âka. Quaternary Science Reviews, 2015, 118, 1-17.	3.0	60
61	Disruption of tephra fall deposits caused by lava flows during basaltic eruptions. Bulletin of Volcanology, 2015, 77, 1.	3.0	12
62	Investigating the Use of Scanning X-Ray Fluorescence to Locate Cryptotephra in Minerogenic Lacustrine Sediment: Experimental Results. Developments in Paleoenvironmental Research, 2015, , 305-324.	8.0	8
63	Rootless cone eruption processes informed by dissected tephra deposits and conduits. Bulletin of Volcanology, 2015, 77, 1.	3.0	13
64	The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10Âka GrÃmsvötn tephra series (i.e. the Saksunarvatn ash). Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	36
65	Melt mixing causes negative correlation of trace element enrichment and CO2 content prior to an Icelandic eruption. Earth and Planetary Science Letters, 2014, 400, 272-283.	4.4	31
66	Crystal Storage and Transfer in Basaltic Systems: the Skuggafjöll Eruption, Iceland. Journal of Petrology, 2014, 55, 2311-2346.	2.8	69
67	Pyroclastic edifices record vigorous lava fountains during the emplacement of a flood basalt flow field, Roza Member, Columbia River Basalt Province, USA. Bulletin of the Geological Society of America, 2014, 126, 875-891.	3.3	25
68	Monitoring the Magmas Fuelling Volcanic Eruptions in Near-real-time Using X-ray Micro-computed Tomography. Journal of Petrology, 2014, 55, 671-684.	2.8	23
69	Volcanic plume height correlated with magma-pressure change at GrÃmsvötn Volcano, Iceland. Nature Geoscience, 2014, 7, 214-218.	12.9	86
70	Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bulletin of Volcanology, 2014, 76, 1.	3.0	86
71	Holocene tephra from Iceland and Alaska in SE Greenland Shelf Sediments. Geological Society Special Publication, 2014, 398, 157-193.	1.3	39
72	The Cosmos greenstone succession, Agnew-Wiluna greenstone belt, Yilgarn Craton, Western Australia: Geochemistry of an enriched Neoarchaean volcanic arc succession. Lithos, 2014, 205, 148-167.	1.4	22

#	Article	IF	CITATIONS
73	Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth and Planetary Science Letters, 2014, 393, 120-131.	4.4	143
74	Reply to comment by Coleâ€Dai et al. on "Climatic impact of the longâ€lasting Laki eruption: Inapplicability of massâ€independent sulfur isotope composition measurements― Journal of Geophysical Research D: Atmospheres, 2014, 119, 6636-6637.	3.3	0
75	Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 14,180.	3.3	23
76	UK monitoring and deposition of tephra from the May 2011 eruption of GrÃmsvötn, Iceland. Journal of Applied Volcanology, 2013, 2, .	2.0	30
77	Crystal–Melt Relationships and the Record of Deep Mixing and Crystallization in the ad 1783 Laki Eruption, Iceland. Journal of Petrology, 2013, 54, 1661-1690.	2.8	97
78	Corrigendum to "Three-dimensional lithofacies variations in hyaloclastite deposits―[J. Volcanol. Geotherm. Res. 250 (2013) 19–33]. Journal of Volcanology and Geothermal Research, 2013, 250, 155-156.	2.1	0
79	Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and GrÃmsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol. Environmental Research, 2013, 127, 63-73.	7.5	60
80	U–Pb dating constraints on the felsic and intermediate volcanic sequence of the nickel-sulphide bearing Cosmos succession, Agnew-Wiluna greenstone belt, Yilgarn Craton, Western Australia. Precambrian Research, 2013, 236, 85-105.	2.7	13
81	Oxygen isotopes in melt inclusions and glasses from the Askja volcanic system, North Iceland. Geochimica Et Cosmochimica Acta, 2013, 123, 55-73.	3.9	13
82	Three-dimensional lithofacies variations in hyaloclastite deposits. Journal of Volcanology and Geothermal Research, 2013, 250, 19-33.	2.1	54
83	Mush Disaggregation in Basaltic Magma Chambers: Evidence from AD 1783 Laki Eruption. Journal of Petrology, 2013, 54, 2411-2411.	2.8	1
84	The 1874–1876 volcanoâ€ŧectonic episode at Askja, North Iceland: Lateral flow revisited. Geochemistry, Geophysics, Geosystems, 2013, 14, 2286-2309.	2.5	71
85	Observing Iceland's Eyjafjallajökull 2010 eruptions with the autonomous NASA Volcano Sensor Web. Journal of Geophysical Research: Solid Earth, 2013, 118, 1936-1956.	3.4	12
86	Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Scientific Reports, 2012, 2, 572.	3.3	287
87	Mush Disaggregation in Basaltic Magma Chambers: Evidence from the ad 1783 Laki Eruption. Journal of Petrology, 2012, 53, 2593-2623.	2.8	64
88	Evaluation of the effects of composition on instrumental mass fractionation during SIMS oxygen isotope analyses of glasses. Chemical Geology, 2012, 334, 312-323.	3.3	30
89	Petrogenesis of the Sólheimar ignimbrite (Katla, Iceland): Implications for tephrostratigraphy. Geochimica Et Cosmochimica Acta, 2012, 86, 318-337.	3.9	18
90	Ash from the Eyjafjallajökull eruption (Iceland): Fragmentation processes and aerodynamic behavior. Journal of Geophysical Research, 2012, 117, .	3.3	83

#	Article	IF	CITATIONS
91	Abrupt onset of the Little Ice Age triggered by volcanism and sustained by seaâ€ice/ocean feedbacks. Geophysical Research Letters, 2012, 39, .	4.0	544
92	Melt inclusion constraints on the magma source of Eyjafjallajökull 2010 flank eruption. Journal of Geophysical Research, 2012, 117, .	3.3	39
93	Distal deposition of tephra from the Eyjafjallajökull 2010 summit eruption. Journal of Geophysical Research, 2012, 117, .	3.3	58
94	Interactions between lava and snow/ice during the 2010 Fimmvörðuháls eruption, south entral Iceland. Journal of Geophysical Research, 2012, 117, .	3.3	46
95	Volcanism and the atmosphere. Eos, 2012, 93, 511-514.	0.1	1
96	Climatic impact of the longâ€lasting 1783 Laki eruption: Inapplicability of massâ€independent sulfur isotopic composition measurements. Journal of Geophysical Research, 2012, 117, .	3.3	32
97	Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at GrĀmsv¶tn Volcano, Iceland. Bulletin of Volcanology, 2012, 74, 1057-1082.	3.0	47
98	Formation of Öskjuvatn caldera at Askja, North Iceland: Mechanism of caldera collapse and implications for the lateral flow hypothesis. Journal of Volcanology and Geothermal Research, 2012, 227-228, 85-101.	2.1	31
99	Lava–ground ice interactions in Elysium Planitia, Mars: Geomorphological and geospatial analysis of the Tartarus Colles cone groups. Journal of Geophysical Research, 2011, 116, .	3.3	48
100	New palaeointensity data from Holocene Icelandic lavas. Physics of the Earth and Planetary Interiors, 2011, 186, 1-10.	1.9	13
101	A 3000-year varved record of glacier activity and climate change from the proglacial lake HvÃŧárvatn, Iceland. Quaternary Science Reviews, 2011, 30, 2715-2731.	3.0	107
102	A model for syn-eruptive groundwater flow during the phreatoplinian phase of the 28–29 March 1875 Askja volcano eruption, Iceland. Journal of Volcanology and Geothermal Research, 2011, 203, 146-157.	2.1	4
103	Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth, 2011, 2, 271-281.	2.8	85
104	Excess mortality in Europe following a future Laki-style Icelandic eruption. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15710-15715.	7.1	91
105	The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei. Atmospheric Chemistry and Physics, 2010, 10, 6025-6041.	4.9	68
106	Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bulletin of Volcanology, 2010, 72, 259-278.	3.0	80
107	Explosive lava–water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland. Bulletin of Volcanology, 2010, 72, 449-467.	3.0	55
108	Explosive lava–water interactions II: self-organization processes among volcanic rootless eruption sites in the 1783–1784 Laki lava flow, Iceland. Bulletin of Volcanology, 2010, 72, 469-485.	3.0	37

#	Article	IF	CITATIONS
109	Widespread dispersal of Icelandic tephra: how does the Eyjafjöll eruption of 2010 compare to past Icelandic events?. Journal of Quaternary Science, 2010, 25, 605-611.	2.1	79
110	Microanalysis of tephra by LA-ICP-MS — Strategies, advantages and limitations assessed using the Thorsmörk ignimbrite (Southern Iceland). Chemical Geology, 2010, 279, 73-89.	3.3	94
111	Perception of Volcanic Eruptions in Iceland. , 2010, , 285-296.		4
112	Abrupt shifts between wet and dry phases of the 1875 eruption of Askja Volcano: Microscopic evidence for macroscopic dynamics. Journal of Volcanology and Geothermal Research, 2009, 184, 256-270.	2.1	53
113	Melt segregations in a Columbia River Basalt lava flow: A possible mechanism for the formation of highly evolved mafic magmas. Lithos, 2009, 112, 434-446.	1.4	28
114	A 2000Âyear record of climate variations reconstructed from Haukadalsvatn, West Iceland. Journal of Paleolimnology, 2009, 41, 95-115.	1.6	78
115	Determination of rapid Deccan eruptions across the Cretaceousâ€Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500â€mâ€thick composite section. Journal of Geophysical Research, 2009, 114, .	3.3	218
116	Effects of megascale eruptions on Earth and Mars. , 2009, , .		8
117	Floods of water and lava in the Columbia River Basin: Analogs for Mars. , 2009, , .		4
118	Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bulletin of Volcanology, 2008, 70, 475-493.	3.0	121
119	Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits II: Local welding. Journal of Volcanology and Geothermal Research, 2008, 171, 20-44.	2.1	14
120	Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits I: Regional welding. Journal of Volcanology and Geothermal Research, 2008, 171, 1-19.	2.1	23
121	The AD 1362 Öræfajökull eruption, S.E. Iceland: Physical volcanology and volatile release. Journal of Volcanology and Geothermal Research, 2008, 178, 719-739.	2.1	22
122	Role of Syn-eruptive Cooling and Degassing on Textures of Lavas from the AD 1783-1784 Laki Eruption, South Iceland. Journal of Petrology, 2007, 48, 1265-1294.	2.8	44
123	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177.		38
124	Survival of the Mýrdalsjökull ice cap through the Holocene thermal maximum: evidence from sulphur contents in Katla tephra layers (Iceland) from the last â^½8400 years. Annals of Glaciology, 2007, 45, 183-188.	1.4	14
125	Recent volatile evolution in the magmatic system of Hekla volcano, Iceland. Earth and Planetary Science Letters, 2007, 255, 373-389.	4.4	69
126	Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. Journal of Geodynamics, 2007, 43, 118-152.	1.6	480

#	Article	IF	CITATIONS
127	Flood lavas on Earth, Io and Mars. Journal of the Geological Society, 2006, 163, 253-264.	2.1	96
128	Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption. Journal of Geophysical Research, 2006, 111, .	3.3	112
129	Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 2006, 248, 518-532.	4.4	273
130	High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	144
131	Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling. Journal of Volcanology and Geothermal Research, 2006, 158, 296-306.	2.1	148
132	Gas Fluxes from Flood Basalt Eruptions. Elements, 2005, 1, 283-287.	0.5	120
133	Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784. , 2005, , .		23
134	Volcanic air pollution and mortality in France 1783–1784. Comptes Rendus - Geoscience, 2005, 337, 641-651.	1.2	46
135	Petrogenesis of lavas from Detroit Seamount: Geochemical differences between Emperor Chain and Hawaiian volcanoes. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	43
136	Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192 Site 1184: a record of subaerial phreatomagmatic eruptions on the Ontong Java Plateau. Geological Society Special Publication, 2004, 229, 275-306.	1.3	30
137	Komatiites and nickel sulphide orebodies of the Black Swan area, Yilgarn Craton, Western Australia. 1. Petrology and volcanology of host rocks. Mineralium Deposita, 2004, 39, 684-706.	4.1	27
138	Icelandic analogs to Martian flood lavas. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	131
139	Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophysical Research Letters, 2004, 31, .	4.0	133
140	Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes. Journal of Geophysical Research, 2004, 109, .	3.3	55
141	The Emperor Seamounts: Southward Motion of the Hawaiian Hotspot Plume in Earth's Mantle. Science, 2003, 301, 1064-1069.	12.6	375
142	Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. Journal of Geophysical Research, 2003, 108, AAC 7-1.	3.3	367
143	Sulphur release from flood lava eruptions in the Veidivötn, GrÃmsvötn and Katla volcanic systems, Iceland. Geological Society Special Publication, 2003, 213, 103-121.	1.3	42
144	Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophysical Research Letters, 2001, 28, 2365-2367.	4.0	127

#	Article	IF	CITATIONS
145	New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD EldgjÃ; eruption, Iceland. Journal of Volcanology and Geothermal Research, 2001, 108, 33-54.	2.1	118
146	Magma Origin and Evolution of White Island (Whakaari) Volcano, Bay of Plenty, New Zealand. Journal of Petrology, 2000, 41, 867-895.	2.8	80
147	Discussion of: "Pulsed inflation of pahoehoe lava flows: implications for flood basalt emplacementâ€; by S.W. Anderson, E.R. Stofan, E.R. Smrekar, J.E. Guest and B. Wood [Earth Planet. Sci. Lett. 168 (1999) 7–18]. Earth and Planetary Science Letters, 2000, 179, 421-423.	4.4	10
148	Terrestrial analogs and thermal models for Martian flood lavas. Journal of Geophysical Research, 2000, 105, 15027-15049.	3.3	189
149	Petrologic investigations of the 1995 and 1996 eruptions of Ruapehu volcano, New Zealand: formation of discrete and small magma pockets and their intermittent discharge. Bulletin of Volcanology, 1999, 61, 15-31.	3.0	93
150	The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes?. Journal of Geophysical Research, 1998, 103, 27411-27445.	3.3	258
151	THE IMPORTANCE OF PÄ€HOEHOE. Annual Review of Earth and Planetary Sciences, 1998, 26, 81-110.	11.0	313
152	A radiocarbon age determination for Mount Edgecumbe (Putauaki) volcano, Bay of Plenty, New Zealand. New Zealand Journal of Geology, and Geophysics, 1997, 40, 559-562.	1.8	9
153	A new model for the emplacement of Columbia River basalts as large, inflated Pahoehoe Lava Flow Fields. Geophysical Research Letters, 1996, 23, 2689-2692.	4.0	208
154	Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (SkaftÃir) Tj E	ا 0 0 0 مور المجاوعة	rgBT /Overlo 271
155	Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. Journal of Volcanology and Geothermal Research, 1996, 74, 49-73.	2.1	129
156	A multifrequency laboratory investigation of attenuation and scattering from volcanic ash clouds. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33, 1071-1082.	6.3	8
157	Atmospheric Aerosol Loading and Transport Due to the 1783-84 Laki Eruption in Iceland, Interpreted from Ash Particles and Acidity in the GISP2 Ice Core. Quaternary Research, 1994, 42, 231-240.	1.7	72
158	The Laki (Skaftï;½r Fires) and Grï;½msvï;½tn eruptions in 1783?1785. Bulletin of Volcanology, 1993, 55, 233-26	5 3. 0	427
159	Correction to "Extreme magma homogeneity in the 1783-84 Lakagigar Eruption: ORigin of a large volume of evolved basalt in Iceland―by Olgeir Sigmarsson, Michel Condomines, Karl Gronvold, and Thorvaldur Thordarson. Geophysical Research Letters, 1992, 19, 731-731.	4.0	Ο
160	The 1991 eruption of Hekla, Iceland. Bulletin of Volcanology, 1992, 54, 238-246.	3.0	127
161	Extreme magma homogeneity in the 1783–84 Lakagigar Eruption: Origin of a large volume of evolved basalt in Iceland. Geophysical Research Letters, 1991, 18, 2229-2232.	4.0	51
162	Emplacement of Continental Flood Basalt Lava Flows. Geophysical Monograph Series, 0, , 381-410.	0.1	132

#	Article	IF	CITATIONS
163	Physical volcanology of continental large igneous provinces: update and review. , 0, , 291-321.		25
164	Segregations in Surtsey lavas (Iceland) reveal extreme magma differentiation during late stage flow emplacement. , 0, , 85-104.		7