Ran Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9101326/publications.pdf

Version: 2024-02-01

45 5,388 papers citations

33 47
h-index g-index

47 47 all docs docs citations

47 times ranked 7627 citing authors

#	Article	IF	CITATIONS
1	Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nature Nanotechnology, 2017, 12, 692-700.	31.5	660
2	ATP-triggered anticancer drug delivery. Nature Communications, 2014, 5, 3364.	12.8	571
3	Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 2014, 43, 3595.	38.1	338
4	Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Materials Today, 2016, 19, 274-283.	14.2	308
5	Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery. Journal of the American Chemical Society, 2014, 136, 14722-14725.	13.7	295
6	Gel–Liposomeâ€Mediated Coâ€Delivery of Anticancer Membraneâ€Associated Proteins and Smallâ€Molecule Drugs for Enhanced Therapeutic Efficacy. Advanced Functional Materials, 2014, 24, 2295-2304.	14.9	252
7	Multistage pHâ€Responsive Liposomes for Mitochondrialâ€₹argeted Anticancer Drug Delivery. Advanced Materials, 2012, 24, 3659-3665.	21.0	219
8	Sequential Intraâ€Intercellular Nanoparticle Delivery System for Deep Tumor Penetration. Angewandte Chemie - International Edition, 2014, 53, 6253-6258.	13.8	211
9	Furinâ€Mediated Sequential Delivery of Anticancer Cytokine and Smallâ€Molecule Drug Shuttled by Graphene. Advanced Materials, 2015, 27, 1021-1028.	21.0	199
10	The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials, 2011, 32, 4609-4620.	11.4	186
11	Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials, 2015, 73, 284-295.	11.4	180
12	Enhanced Transdermal Drug Delivery by Transfersome-Embedded Oligopeptide Hydrogel for Topical Chemotherapy of Melanoma. ACS Nano, 2018, 12, 9693-9701.	14.6	177
13	Enhanced Anticancer Efficacy by ATPâ€Mediated Liposomal Drug Delivery. Angewandte Chemie - International Edition, 2014, 53, 5815-5820.	13.8	175
14	ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials, 2015, 50, 67-74.	11.4	159
15	A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nature Nanotechnology, 2021, 16, 104-113.	31.5	143
16	A Collaborative Assembly Strategy for Tumor-Targeted siRNA Delivery. Journal of the American Chemical Society, 2015, 137, 6000-6010.	13.7	114
17	Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials, 2013, 34, 2773-2786.	11.4	106
18	Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nature Communications, 2020, 11 , 460 .	12.8	93

#	Article	IF	Citations
19	Tumorâ€Specific Selfâ€Degradable Nanogels as Potential Carriers for Systemic Delivery of Anticancer Proteins. Advanced Functional Materials, 2018, 28, 1707371.	14.9	85
20	Folding graft copolymer with pendant drug segments for co-delivery of anticancer drugs. Biomaterials, 2014, 35, 7194-7203.	11.4	71
21	Hierarchical Nanoassemblies-Assisted Combinational Delivery of Cytotoxic Protein and Antibiotic for Cancer Treatment. Nano Letters, 2018, 18, 2294-2303.	9.1	71
22	Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomaterials Science, 2017, 5, 1367-1381.	5.4	69
23	Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Scientific Reports, 2017, 7, 44758.	3.3	65
24	Paclitaxel-Loaded <i>N</i> -Octyl- <i>O</i> -sulfate Chitosan Micelles for Superior Cancer Therapeutic Efficacy and Overcoming Drug Resistance. Molecular Pharmaceutics, 2014, 11, 145-157.	4.6	62
25	Cell-based drug delivery systems for biomedical applications. Nano Research, 2018, 11, 5240-5257.	10.4	55
26	Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine, 2014, 9, 1117-1120.	3.3	53
27	Advances in Engineering Cells for Cancer Immunotherapy. Theranostics, 2019, 9, 7889-7905.	10.0	44
28	A Substrate-Selective Enzyme-Catalysis Assembly Strategy for Oligopeptide Hydrogel-Assisted Combinatorial Protein Delivery. Nano Letters, 2017, 17, 7447-7454.	9.1	40
29	Liposomal 9-Aminoacridine for Treatment of Ischemic Stroke: From Drug Discovery to Drug Delivery. Nano Letters, 2020, 20, 1542-1551.	9.1	40
30	Oral Nanomedicine Based on Multicomponent Microemulsions for Drug-Resistant Breast Cancer Treatment. Biomacromolecules, 2017, 18, 1268-1280.	5.4	39
31	Enhancing effect of N-octyl-O-sulfate chitosan on etoposide absorption. International Journal of Pharmaceutics, 2011, 409, 38-45.	5. 2	34
32	Rational Design and Bioimaging Applications of Highly Specific "Turn-On―Fluorescent Probe for Hypochlorite. Bioconjugate Chemistry, 2018, 29, 2838-2845.	3.6	34
33	Sequentially Siteâ€Specific Delivery of Apoptotic Protein and Tumorâ€Suppressor Gene for Combination Cancer Therapy. Small, 2019, 15, e1902998.	10.0	26
34	Bioresponsive nanogels for protein delivery. View, 2022, 3, .	5. 3	26
35	Self-regulated hirudin delivery for anticoagulant therapy. Science Advances, 2020, 6, .	10.3	24
36	Self-folded redox/acid dual-responsive nanocarriers for anticancer drug delivery. Chemical Communications, 2014, 50, 15105-15108.	4.1	23

#	Article	IF	Citations
37	Polysaccharide-Based Biomaterials for Protein Delivery. Medicine in Drug Discovery, 2020, 7, 100031.	4.5	22
38	Advances in living cell-based anticancer therapeutics. Biomaterials Science, 2020, 8, 2344-2365.	5 . 4	22
39	Enzyme-instructed hybrid nanogel/nanofiber oligopeptide hydrogel for localized protein delivery. Acta Pharmaceutica Sinica B, 2021, 11, 2070-2079.	12.0	14
40	Combating Cancer Stem-Like Cell-Derived Resistance to Anticancer Protein by Liposome-Mediated Acclimatization Strategy. Nano Letters, 2022, 22, 2419-2428.	9.1	12
41	Collaborative assembly-mediated siRNA delivery for relieving inflammation-induced insulin resistance. Nano Research, 2020, 13, 2958-2966.	10.4	8
42	Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 598050.	4.1	4
43	Drug Delivery: Gel–Liposomeâ€Mediated Coâ€Delivery of Anticancer Membraneâ€Associated Proteins and Smallâ€Molecule Drugs for Enhanced Therapeutic Efficacy (Adv. Funct. Mater. 16/2014). Advanced Functional Materials, 2014, 24, 2258-2258.	14.9	3
44	Drug Delivery: Furinâ€Mediated Sequential Delivery of Anticancer Cytokine and Smallâ€Molecule Drug Shuttled by Graphene (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 958-958.	21.0	1
45	A carrier-free metal–organic hybrid nanoassembly with combination anti-viral and hepato-protective activity for hepatitis B treatment. Biomaterials Science, 2022, 10, 4356-4366.	5 . 4	1