Simone Taioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9101287/publications.pdf

Version: 2024-02-01

218677 223800 2,203 68 26 46 citations h-index g-index papers 71 71 71 3292 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Novel Approach to \hat{I}^2 -Decay: PANDORA, a New Experimental Setup for Future In-Plasma Measurements. Universe, 2022, 8, 80.	2.5	19
2	Understanding anharmonic effects on hydrogen desorption characteristics of Mg _{<i>n</i>} H _{2<i>n</i>} nanoclusters by <i>ab initio</i> trained deep neural network. Nanoscale, 2022, 14, 5589-5599.	5.6	6
3	Energy Deposition around Swift Carbon-lon Tracks in Liquid Water. International Journal of Molecular Sciences, 2022, 23, 6121.	4.1	7
4	Theoretical Estimate of the Half-life for the Radioactive ¹³⁴ Cs and ¹³⁵ Cs in Astrophysical Scenarios. Astrophysical Journal, 2022, 933, 158.	4.5	10
5	Electronic excitation spectra of cerium oxides: from <i>ab initio</i> dielectric response functions to Monte Carlo electron transport simulations. Physical Chemistry Chemical Physics, 2021, 23, 19173-19187.	2.8	10
6	The Resonant and Normal Auger Spectra of Ozone. Symmetry, 2021, 13, 516.	2.2	4
7	Computational methods for 2D materials modelling. Reports on Progress in Physics, 2021, 84, 106501.	20.1	4
8	Relative Role of Physical Mechanisms on Complex Biodamage Induced by Carbon Irradiation. Journal of Physical Chemistry Letters, 2021, 12, 487-493.	4.6	15
9	Presolar Grain Isotopic Ratios as Constraints to Nuclear and Stellar Parameters of Asymptotic Giant Branch Star Nucleosynthesis. Astrophysical Journal, 2021, 921, 7.	4.5	23
10	Relativistic quantum theory and algorithms: A toolbox for modeling many-fermion systems in different scenarios. Annual Reports in Computational Chemistry, 2021, 17, 55-111.	1.7	2
11	Structural, electronic and mechanical properties of all-sp2 carbon allotropes with density lower than graphene. Carbon, 2020, 159, 512-526.	10.3	18
12	A comparison between Monte Carlo method and the numerical solution of the Ambartsumian-Chandrasekhar equations to unravel the dielectric response of metals. Computational Materials Science, 2020, 173, 109420.	3.0	8
13	Exploring event horizons and Hawking radiation through deformed graphene membranes. 2D Materials, 2020, 7, 041006.	4.4	13
14	Enabling Materials By Dimensionality: From 0D to 3D Carbon-Based Nanostructures. , 2020, , 135-200.		1
15	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
16	Effects of a revised $\langle \sup 7 \langle \sup 8e \rangle \hat{a}^{\circ} \langle \sup -2e \rangle$ and Astrophysics, 2019, 623, A126.	5.1	13
17	Secondary electron emission and yield spectra of metals from Monte Carlo simulations and experiments. Journal of Physics Condensed Matter, 2019, 31, 055901.	1.8	22
18	Mechanical and thermal properties of graphene random nanofoams via Molecular Dynamics simulations. Carbon, 2018, 132, 766-775.	10.3	39

#	Article	IF	CITATIONS
19	UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in <i>trans</i> -Azobenzene. Journal of Physical Chemistry Letters, 2018, 9, 1534-1541.	4.6	96
20	Anisotropic Approach for Simulating Electron Transport in Layered Materials: Computational and Experimental Study of Highly Oriented Pyrolitic Graphite. Journal of Physical Chemistry C, 2018, 122, 10159-10166.	3.1	14
21	Gas adsorption and dynamics in Pillared Graphene Frameworks. Microporous and Mesoporous Materials, 2018, 257, 222-231.	4.4	31
22	Nuclear Beta Decay: Relativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Mediumâ∈Heavy Nuclei and of Atomic and Molecular Electronic Structure (Adv. Theory Simul. 11/2018). Advanced Theory and Simulations, 2018, 1, 1870030.	2.8	8
23	A novel combined experimental and multiscale theoretical approach to unravel the structure of SiC/SiO _x core/shell nanowires for their optimal design. Nanoscale, 2018, 10, 13449-13461.	5.6	5
24	Ultrafast Carotenoid to Retinal Energy Transfer in Xanthorhodopsin Revealed by the Combination of Transient Absorption and Twoâ€Dimensional Electronic Spectroscopy. Chemistry - A European Journal, 2018, 24, 12084-12092.	3.3	2
25	Relativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Mediumâ€Heavy Nuclei and of Atomic and Molecular Electronic Structure. Advanced Theory and Simulations, 2018, 1, 1800086.	2.8	2
26	A Quantum Chemical Interpretation of Two-Dimensional Electronic Spectroscopy of Light-Harvesting Complexes. Journal of the American Chemical Society, 2017, 139, 7558-7567.	13.7	71
27	Monte Carlo simulations of measured electron energy-loss spectra of diamond and graphite: Role of dielectric-response models. Carbon, 2017, 118, 299-309.	10.3	21
28	Designing graphene based nanofoams with nonlinear auxetic and anisotropic mechanical properties under tension or compression. Carbon, 2017, 111, 796-806.	10.3	39
29	Spider silk reinforced by graphene or carbon nanotubes. 2D Materials, 2017, 4, 031013.	4.4	57
30	2D Material Armors Showing Superior Impact Strength of Few Layers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40820-40830.	8.0	32
31	Lithium abundances in AGB stars and a new estimate for the ^{7 < /sup>Be life-time. Journal of Physics: Conference Series, 2016, 665, 012014.}	0.4	2
32	Lobachevsky crystallography made real through carbon pseudospheres. Journal of Physics Condensed Matter, 2016, 28, 13LT01.	1.8	20
33	Synthesis of single layer graphene on Cu(111) by C ₆₀ supersonic molecular beam epitaxy. RSC Advances, 2016, 6, 37982-37993.	3.6	31
34	Multiscale Investigation of Oxygen Vacancies in TiO ₂ Anatase and Their Role in Memristor's Behavior. Journal of Physical Chemistry C, 2016, 120, 22045-22053.	3.1	24
35	A Bird's Eye View on the Concept of Multichannel Scattering with Applications to Materials Science, Condensed Matter, and Nuclear Astrophysics. Frontiers in Materials, 2015, 2, .	2.4	O
36	The Interaction of C60 on Si(111) $7\tilde{A}$ ¢â,¬â€° \tilde{A} f— \tilde{A} ¢â,¬â€°7 Studied by Supersonic Molecular Beams: Interplay between Precursor Kinetic Energy and Substrate Temperature in Surface Activated Processes. Frontiers in Materials, 2015, 2, .	2.4	5

3

#	Article	IF	CITATIONS
37	Editorial: New Frontiers in Multiscale Modelling of Advanced Materials. Frontiers in Materials, 2015, 2, .	2.4	1
38	A Computational Perspective on Multichannel Scattering Theory with Applications to Physical and Nuclear Chemistry. Annual Reports in Computational Chemistry, 2015, 11, 191-310.	1.7	8
39	Gas Adsorption and Separation in Realistic and Idealized Frameworks of Organic Pillared Graphene: A Comparative Study. Journal of Physical Chemistry C, 2015, 119, 1980-1987.	3.1	29
40	Tetrapeptide unfolding dynamics followed by core-level spectroscopy: a first-principles approach. Physical Chemistry Chemical Physics, 2015, 17, 11269-11276.	2.8	4
41	Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations. Journal of Molecular Modeling, 2014, 20, 2260.	1.8	27
42	The BEC-BCS crossover in ultracold Fermi gases beyond the contact-potential approximation. European Physical Journal D, 2013, 67, 1.	1.3	1
43	Non-adiabatic <i>ab initio</i> molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature. Journal of Chemical Physics, 2013, 138, 044701.	3.0	12
44	THEORETICAL ESTIMATES OF STELLAR <i>e</i> ^{â€"} CAPTURES. I. THE HALF-LIFE OF ⁷ Be IN EVOLVED STARS. Astrophysical Journal, 2013, 764, 118.	4.5	27
45	A scattering view of the Bogoliubov-de Gennes equations. , 2012, , .		1
46	Infrared spectroscopy of copper-resveratrol complexes: A joint experimental and theoretical study. Journal of Chemical Physics, 2012, 137, 024307.	3.0	46
47	Epitaxy of Nanocrystalline Silicon Carbide on Si(111) at Room Temperature. Journal of the American Chemical Society, 2012, 134, 17400-17403.	13.7	30
48	Modeling flexibility in metal–organic frameworks: Comparison between Density-Functional Tight-Binding and Universal Force Field approaches for bonded interactions. Microporous and Mesoporous Materials, 2012, 163, 215-220.	4.4	31
49	Communication: Electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations. Journal of Chemical Physics, 2012, 136, 181101.	3.0	43
50	Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation. Microporous and Mesoporous Materials, 2011, 143, 46-53.	4.4	136
51	Finite-range effects in dilute Fermi gases at unitarity. Physical Review A, 2011, 84, .	2.5	8
52	Direct observation of a dispersionless impurity band in hydrogenated graphene. Physical Review B, 2011, 83, .	3.2	49
53	Electron spectroscopies and inelastic processes in nanoclusters and solids: Theory and experiment. Physics Reports, 2010, 493, 237-319.	25.6	55
54	Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene. Nano Letters, 2010, 10, 3360-3366.	9.1	297

#	Article	IF	Citations
55	Mixedab initioquantum mechanical and Monte Carlo calculations of secondary emission fromSiO2nanoclusters. Physical Review B, 2009, 79, .	3.2	37
56	SURPRISES: when $\langle i \rangle$ ab initio $\langle i \rangle$ meets statistics in extended systems. Computational Science & Discovery, 2009, 2, 015002.	1.5	33
57	Electronic properties of extended graphene nanomaterials from <i>GW</i> calculations. Physica Status Solidi (B): Basic Research, 2009, 246, 2572-2576.	1.5	26
58	Melting curve and Hugoniot of molybdenum up to 400 GPa by <i>ab initio</i> simulations. Journal of Physics: Conference Series, 2008, 121, 012009.	0.4	11
59	Ab-initio melting curve and principal Hugoniot of tantalum. Journal of Physics: Conference Series, 2008, 121, 012010.	0.4	4
60	Ab initiomelting curve of molybdenum by the phase coexistence method. Journal of Chemical Physics, 2007, 126, 194502.	3.0	89
61	Melting curve of tantalum from first principles. Physical Review B, 2007, 75, .	3.2	99
62	WATERWAVES: wave particles dynamics on a complex triatomic potential. Computer Physics Communications, 2006, 175, 41-51.	7. 5	6
63	A wave packet method for treating nuclear dynamics on complex potentials. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4379-4392.	1.5	12
64	Electron-molecule collisions at low and intermediate energies using the R-matrix method. European Physical Journal D, 2005, 35, 231-237.	1.3	18
65	Ab initiocalculation of the normal Auger spectrum of C2H2. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 1237-1244.	1.5	7
66	Auger-electron angular distributions calculated without the two-step approximation: Calculation of angle-resolved resonant Auger spectra of C2H2. Physical Review A, 2004, 70, .	2.5	6
67	Ab initio calculation of the C1s photoelectron spectrum of C2H2. Nuclear Instruments & Methods in Physics Research B, 2004, 213, 65-70.	1.4	7
68	On the angular dependence of L x-ray production cross sections following photoionization at an energy of 59.54 keV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 843-851.	1. 5	34