Liming He

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9101238/liming-he-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37	1,227	21	35
papers	citations	h-index	g-index
41 ext. papers	1,546 ext. citations	6.8 avg, IF	4.58 L-index

#	Paper	IF	Citations
37	Non-linearity between gross primary productivity and far-red solar-induced chlorophyll fluorescence emitted from canopies of major biomes. <i>Remote Sensing of Environment</i> , 2022 , 271, 11289	6 ^{13.2}	2
36	Integration of multi-scale remote sensing data for reindeer lichen fractional cover mapping in Eastern Canada. <i>Remote Sensing of Environment</i> , 2021 , 267, 112731	13.2	5
35	Soil Moisture Active Passive Improves Global Soil Moisture Simulation in a Land Surface Scheme and Reveals Strong Irrigation Signals Over Farmlands. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL0	92858	2
34	Ground-Based Multiangle Solar-Induced Chlorophyll Fluorescence Observation and Angular Normalization for Assessing Crop Productivity. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG006082	3.7	О
33	Leveraging Deep Neural Networks to Map Caribou Lichen in High-Resolution Satellite Images Based on a Small-Scale, Noisy UAV-Derived Map. <i>Remote Sensing</i> , 2021 , 13, 2658	5	4
32	Crop Biomass Mapping Based on Ecosystem Modeling at Regional Scale Using High Resolution Sentinel-2 Data. <i>Remote Sensing</i> , 2021 , 13, 806	5	2
31	Evaluating Image Normalization via GANs for Environmental Mapping: A Case Study of Lichen Mapping Using High-Resolution Satellite Imagery. <i>Remote Sensing</i> , 2021 , 13, 5035	5	
30	The global distribution of leaf chlorophyll content. <i>Remote Sensing of Environment</i> , 2020 , 236, 111479	13.2	57
29	Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. <i>ISPRS Journal of Photogrammetry and Remote Sensing</i> , 2020 , 168, 236-250	11.8	25
28	Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants. <i>Forests</i> , 2020 , 11, 829	2.8	17
27	Global 500 m clumping index product derived from MODIS BRDF data (2001 2 017). <i>Remote Sensing of Environment</i> , 2019 , 232, 111296	13.2	23
26	Improved estimates of global terrestrial photosynthesis using information on leaf chlorophyll content. <i>Global Change Biology</i> , 2019 , 25, 2499-2514	11.4	50
25	Exploring SMAP and OCO-2 observations to monitor soil moisture control on photosynthetic activity of global drylands and croplands. <i>Remote Sensing of Environment</i> , 2019 , 232, 111314	13.2	11
24	Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements. <i>Remote Sensing of Environment</i> , 2019 , 232, 111344-111344	13.2	33
23	Cotton Yield Estimate Using Sentinel-2 Data and an Ecosystem Model over the Southern US. <i>Remote Sensing</i> , 2019 , 11, 2000	5	14
22	From Canopy-Leaving to Total Canopy Far-Red Fluorescence Emission for Remote Sensing of Photosynthesis: First Results From TROPOMI. <i>Geophysical Research Letters</i> , 2019 , 46, 12030-12040	4.9	26
21	Underestimation of Global Photosynthesis in Earth System Models Due to Representation of Vegetation Structure. <i>Global Biogeochemical Cycles</i> , 2019 , 33, 1358-1369	5.9	14

(2011-2018)

Changes in the Shadow: The Shifting Role of Shaded Leaves in Global Carbon and Water Cycles Under Climate Change. <i>Geophysical Research Letters</i> , 2018 , 45, 5052-5061 Inverting the maximum carboxylation rate (V cmax) from the sunlit leaf photosynthesis rate derived from measured light response curves at tower flux sites. <i>Agricultural and Forest Meteorology</i> , 2017 , 236, 48-66	4·9 5.8	34
derived from measured light response curves at tower flux sites. Agricultural and Forest	5.8	
		23
Simulation and SMAP Observation of Sun-Glint Over the Land Surface at the L-Band. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2017 , 55, 2589-2604	8.1	17
Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity. <i>Geophysical Research Letters</i> , 2017 , 44, 5691-5699	4.9	62
Assessment of SMAP soil moisture for global simulation of gross primary production. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 1549-1563	3.7	36
Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles. <i>Geophysical Research Letters</i> , 2017 , 44, 11,590-11,600	4.9	34
Influence of site index on the relationship between forest net primary productivity and stand age. <i>PLoS ONE</i> , 2017 , 12, e0177084	3.7	10
Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2016 , 44, 53-60	7.3	34
Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems. Agricultural and Forest Meteorology, 2016 , 216, 82-92	5.8	47
Optimization of water uptake and photosynthetic parameters in an ecosystem model using tower flux data. <i>Ecological Modelling</i> , 2014 , 294, 94-104	3	25
Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275m resolution. <i>Remote Sensing of Environment</i> , 2013 , 138, 126-133	13.2	37
Global clumping index map derived from the MODIS BRDF product. <i>Remote Sensing of Environment</i> , 2012 , 119, 118-130	13.2	152
Relationships between net primary productivity and forest stand age in U.S. forests. <i>Global Biogeochemical Cycles</i> , 2012 , 26,	5.9	95
Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		25
Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data. <i>International Journal of Remote Sensing</i> , 2012 , 33, 7047-7059	3.1	18
Normalized algorithm for mapping and dating forest disturbances and regrowth for the United States. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2011 , 13, 236-245	7.3	22
Age structure and disturbance legacy of North American forests. <i>Biogeosciences</i> , 2011 , 8, 715-732	4.6	202
	Simulation and SMAP Observation of Sun-Glint Over the Land Surface at the L-Band. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 2589-2604 Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity. Geophysical Research Letters, 2017, 44, 5691-5699 Assessment of SMAP soil moisture for global simulation of gross primary production. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1549-1563 Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles. Geophysical Research Letters, 2017, 44, 11,590-11,600 Influence of site index on the relationship between forest net primary productivity and stand age. PLoS ONE, 2017, 12, e0177084 Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 53-60 Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems. Agricultural and Forest Meteorology, 2016, 216, 82-92 Optimization of water uptake and photosynthetic parameters in an ecosystem model using tower flux data. Ecological Modelling, 2014, 294, 94-104 Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275m resolution. Remote Sensing of Environment, 2013, 138, 126-133 Global clumping index map derived from the MODIS BRDF product. Remote Sensing of Environment, 2012, 119, 118-130 Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochemical Cycles, 2012, 26, Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. Journal of Geophysical Research, 2012, 117, n/a-n/a Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data. International Journal of Remote Sensing, 2012, 33, 7047-7059 Normalized algorithm	Simulation and SMAP Observation of Sun-Glint Over the Land Surface at the L-Band. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 2589-2604 Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity. Geophysical Research Letters, 2017, 44, 5691-5699 49 Assessment of SMAP soil moisture for global simulation of gross primary production. Journal of Geophysical Research C: Biogeosciences, 2017, 122, 1549-1563 Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles. Geophysical Research Letters, 2017, 44, 11,590-11,600 49 Influence of site index on the relationship between forest net primary productivity and stand age. PLoS ONE, 2017, 12, e0177084 Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 53-60 73 Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems. Agricultural and Forest Meteorology, 2016, 216, 82-92 Optimization of water uptake and photosynthetic parameters in an ecosystem model using tower flux data. Ecological Modelling, 2014, 294, 94-104 30 Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275m resolution. Remote Sensing of Environment, 2013, 138, 126-133 Global clumping index map derived from the MODIS BRDF product. Remote Sensing of Environment, 2012, 119, 118-130 Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochemical Cycles, 2012, 26, Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. Journal of Geophysical Research, 2012, 117, n/a-n/a Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data. International Journal of Remote Sensing, 2012, 33, 7047-7059 Norm

Enhancement of a fire-detection algorithm by eliminating solar contamination effects and atmospheric path radiance: application to MODIS data. *International Journal of Remote Sensing*, **2011**, 32, 6273-6293

3.1 19

Age structure and disturbance legacy of North American forests

15