
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/910117/publications.pdf Version: 2024-02-01

ΙΠΟΛ ΜΑΓΕΛΤΤΙ

#	Article	IF	CITATIONS
1	Applications of magnetic metal–organic framework composites. Journal of Materials Chemistry A, 2013, 1, 13033.	10.3	275
2	Mesoporous thin films: properties and applications. Chemical Society Reviews, 2013, 42, 4198.	38.1	267
3	Hierarchical Mesoporous Films: From Self-Assembly to Porosity with Different Length Scales. Chemistry of Materials, 2011, 23, 2501-2509.	6.7	135
4	Orderâ^'Disorder in Self-Assembled Mesostructured Silica Films: A Concepts Review. Chemistry of Materials, 2009, 21, 2555-2564.	6.7	113
5	Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. Chemistry - A European Journal, 2019, 25, 11963-11974.	3.3	99
6	Evaporation of Ethanol and Ethanolâ^'Water Mixtures Studied by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2008, 112, 6512-6516.	2.5	81
7	One-Pot Route to Produce Hierarchically Porous Titania Thin Films by Controlled Self-Assembly, Swelling, and Phase Separation. Chemistry of Materials, 2009, 21, 2763-2769.	6.7	71
8	Highly Ordered "Defect-Free―Self-Assembled Hybrid Films with a Tetragonal Mesostructure. Journal of the American Chemical Society, 2005, 127, 3838-3846.	13.7	69
9	Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. Scientific Reports, 2017, 7, 5469.	3.3	68
10	Aggregation States of Rhodamine 6G in Mesostructured Silica Films. Journal of Physical Chemistry C, 2008, 112, 16225-16230.	3.1	66
11	Fabrication of Advanced Functional Devices Combining Soft Chemistry with Xâ€ray Lithography in One Step. Advanced Materials, 2009, 21, 4932-4936.	21.0	63
12	Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection. Applied Surface Science, 2018, 450, 451-460.	6.1	63
13	Sophorolipids: a yeast-derived glycolipid as greener structure directing agents for self-assembled nanomaterials. Green Chemistry, 2010, 12, 1564.	9.0	62
14	Graphene and carbon nanodots in mesoporous materials: an interactive platform for functional applications. Nanoscale, 2015, 7, 12759-12772.	5.6	60
15	ZnO as an Efficient Nucleating Agent for Rapid, Room Temperature Synthesis and Patterning of Zn-Based Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 690-699.	6.7	60
16	Hierarchical Porous Silica Films with Ultralow Refractive Index. Chemistry of Materials, 2009, 21, 2055-2061.	6.7	57
17	Energy Transfer Induced by Carbon Quantum Dots in Porous Zinc Oxide Nanocomposite Films. Journal of Physical Chemistry C, 2015, 119, 2837-2843.	3.1	55
18	Time-Resolved Simultaneous Detection of Structural and Chemical Changes during Self-Assembly of Mesostructured Films. Journal of Physical Chemistry C, 2007, 111, 5345-5350.	3.1	54

#	Article	IF	CITATIONS
19	Graphene Oxide/Iron Oxide Nanocomposites for Water Remediation. ACS Applied Nano Materials, 2018, 1, 6724-6732.	5.0	53
20	PbS-Doped Mesostructured Silica Films with High Optical Nonlinearity. Chemistry of Materials, 2005, 17, 4965-4970.	6.7	52
21	Top-down patterning of Zeolitic Imidazolate Framework composite thin films by deep X-ray lithography. Chemical Communications, 2012, 48, 7483.	4.1	51
22	Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films. Scientific Reports, 2020, 10, 4770.	3.3	51
23	Carbon Dots in Water and Mesoporous Matrix: Chasing the Origin of their Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 25638-25650.	3.1	50
24	Mesostructured self-assembled titania films for photovoltaic applications. Microporous and Mesoporous Materials, 2006, 88, 304-311.	4.4	48
25	Evaporation-Induced Crystallization of Pluronic F127 Studied in Situ by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 304-308.	2.5	48
26	Multifunctionalization of wool fabrics through nanoparticles: A chemical route towards smart textiles. Journal of Colloid and Interface Science, 2015, 456, 85-92.	9.4	47
27	Fabrication of Mesoporous Functionalized Arrays by Integrating Deep Xâ€Ray Lithography with Dipâ€Pen Writing. Advanced Materials, 2008, 20, 1864-1869.	21.0	45
28	Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection. Nanoscale, 2011, 3, 3760.	5.6	45
29	Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication. RSC Advances, 2015, 5, 20432-20439.	3.6	38
30	Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure Relationship. Journal of Carbon Research, 2021, 7, 2.	2.7	38
31	Performance of oil sorbents based on reduced graphene oxide–silica composite aerogels. Journal of Environmental Chemical Engineering, 2020, 8, 103632.	6.7	37
32	Thermal Stability of Lysozyme Langmuirâ^'Schaefer Films by FTIR Spectroscopy. Langmuir, 2007, 23, 1147-1151.	3.5	36
33	Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. Journal of Materials Chemistry, 2011, 21, 3597.	6.7	36
34	Thermal-induced phase transitions in self-assembled mesostructured films studied by small-angle X-ray scattering. Journal of Synchrotron Radiation, 2005, 12, 734-738.	2.4	35
35	A MOF-based carrier for <i>in situ</i> dopamine delivery. RSC Advances, 2018, 8, 25664-25672.	3.6	35
36	Writing Self-Assembled Mesostructured Films with In situ Formation of Gold Nanoparticles. Chemistry of Materials, 2010, 22, 2132-2137.	6.7	34

#	Article	IF	CITATIONS
37	Hard X-rays meet soft matter: when bottom-up and top-down get along well. Soft Matter, 2012, 8, 3722.	2.7	33
38	Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films. Physical Chemistry Chemical Physics, 2014, 16, 25809-25818.	2.8	32
39	Highly ordered self-assembled mesostructured membranes: Porous structure and pore surface coverage. Microporous and Mesoporous Materials, 2007, 103, 113-122.	4.4	30
40	Hafnia sol-gel films synthesized from HfCl4: Changes of structure and properties with the firing temperature. Journal of Sol-Gel Science and Technology, 2007, 42, 89-93.	2.4	30
41	Incorporation of graphene into silica-based aerogels and application for water remediation. RSC Advances, 2016, 6, 66516-66523.	3.6	30
42	Confined growth of iron cobalt nanocrystals in mesoporous silica thin films: FeCo–SiO2 nanocomposites. Microporous and Mesoporous Materials, 2008, 115, 338-344.	4.4	28
43	Solâ€Gel Chemistry for Carbon Dots. Chemical Record, 2018, 18, 1192-1202.	5.8	28
44	Sol–Gel Processing of Bi ₂ Ti ₂ O ₇ and Bi ₂ Ti ₄ O ₁₁ Films with Photocatalytic Activity. Journal of the American Ceramic Society, 2010, 93, 2897-2902.	3.8	27
45	Exfoliated Graphene into Highly Ordered Mesoporous Titania Films: Highly Performing Nanocomposites from Integrated Processing. ACS Applied Materials & Interfaces, 2014, 6, 795-802.	8.0	27
46	Sol–gel chemistry for graphene–silica nanocomposite films. New Journal of Chemistry, 2014, 38, 3777-3782.	2.8	27
47	Kinetics of polycondensation reactions during self-assembly of mesostructured films studied by in situ infrared spectroscopy. Chemical Communications, 2005, , 2384.	4.1	26
48	Densification of sol–gel silica thin films induced by hard X-rays generated by synchrotron radiation. Journal of Synchrotron Radiation, 2011, 18, 280-286.	2.4	26
49	Photodegradation of rhodamine 6G dimers in silica sol–gel films. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 271, 93-98.	3.9	26
50	Highly Ordered Self-Assembled Mesostructured Hafnia Thin Films:Â An Example of Rewritable Mesostructure. Chemistry of Materials, 2006, 18, 4553-4560.	6.7	25
51	Sol–gel chemistry: from self-assembly to complex materials. Journal of Sol-Gel Science and Technology, 2011, 60, 226-235.	2.4	25
52	In Situ Time-Resolved SAXS Study of the Formation of Mesostructured Organically Modified Silica through Modeling of Micelles Evolution during Surfactant-Templated Self-Assembly. Langmuir, 2012, 28, 17477-17493.	3.5	25
53	Molecularly imprinted La-doped mesoporous titania films with hydrolytic properties toward organophosphate pesticides. New Journal of Chemistry, 2013, 37, 2995.	2.8	25
54	Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology, 2016, 85, 1274-1281.e3.	2.1	25

#	Article	IF	CITATIONS
55	Boron oxynitride two-colour fluorescent dots and their incorporation in a hybrid organic-inorganic film. Journal of Colloid and Interface Science, 2020, 560, 398-406.	9.4	24
56	Shaping Mesoporous Films Using Dewetting on X-ray Pre-patterned Hydrophilic/Hydrophobic Layers and Pinning Effects at the Pattern Edge. Langmuir, 2011, 27, 3898-3905.	3.5	23
57	Correlative Analysis of the Crystallization of Solâ^'Gel Dense and Mesoporous Anatase Titania Films. Journal of Physical Chemistry C, 2010, 114, 22385-22391.	3.1	22
58	Chemical Tailoring of Hybrid Solâ^'Gel Thick Coatings As Hosting Matrix for Functional Patterned Microstructures. ACS Applied Materials & amp; Interfaces, 2011, 3, 245-251.	8.0	22
59	Combining Top-Down and Bottom-Up Routes for Fabrication of Mesoporous Titania Films Containing Ceria Nanoparticles for Free Radical Scavenging. ACS Applied Materials & Interfaces, 2013, 5, 3168-3175.	8.0	22
60	Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films. Journal of Physical Chemistry C, 2014, 118, 12000-12009.	3.1	22
61	Mesoporous Aluminophosphate Thin Films with Cubic Pore Arrangement. Langmuir, 2008, 24, 6220-6225.	3.5	21
62	Self-Assembly of Shape Controlled Hierarchical Porous Thin Films: Mesopores and Nanoboxes. Chemistry of Materials, 2009, 21, 4846-4850.	6.7	21
63	Smart tailoring of the surface chemistry in GPTMS hybrid organic–inorganic films. New Journal of Chemistry, 2014, 38, 1635-1640.	2.8	21
64	Photoâ€Fabrication of Titania Hybrid Films with Tunable Hierarchical Structures and Stimuliâ€Responsive Properties. Advanced Materials, 2010, 22, 3303-3306.	21.0	20
65	Release of Ceria Nanoparticles Grafted on Hybrid Organic–Inorganic Films for Biomedical Application. ACS Applied Materials & Interfaces, 2012, 4, 3916-3922.	8.0	20
66	Cerium oxide nanoparticles (CeO2 NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes. Reproduction, Fertility and Development, 2017, 29, 1046.	0.4	20
67	Modulating the Optical Properties of Citrazinic Acid through the Monomer-to-Dimer Transformation. Journal of Physical Chemistry A, 2020, 124, 197-203.	2.5	20
68	Anomalous Optical Properties of Citrazinic Acid under Extreme pH Conditions. ACS Omega, 2020, 5, 10958-10964.	3.5	20
69	Deep Xâ€ray Lithography for Direct Patterning of PECVD Films. Plasma Processes and Polymers, 2010, 7, 459-465.	3.0	19
70	Double responsive copolymer hydrogels prepared by frontal polymerization. Journal of Polymer Science Part A, 2016, 54, 2166-2170.	2.3	19
71	Mesoporous materials as platforms for surface-enhanced Raman scattering. TrAC - Trends in Analytical Chemistry, 2019, 114, 233-241.	11.4	19
72	Formation of cerium titanate, CeTi2O6, in sol–gel films studied by XRD and FAR infrared spectroscopy. Journal of Sol-Gel Science and Technology, 2009, 52, 356-361.	2.4	18

#	Article	IF	CITATIONS
73	Water Evaporation Studied by In Situ Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 2745-2749.	2.5	18
74	IR and X-ray time-resolved simultaneous experiments:Âan opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. Journal of Synchrotron Radiation, 2012, 19, 892-904.	2.4	18
75	Improving the Selective Efficiency of Graphene-Mediated Enhanced Raman Scattering through Molecular Imprinting. ACS Applied Materials & Interfaces, 2016, 8, 34098-34107.	8.0	18
76	Stain Effects Studied by Time-Resolved Infrared Imaging. Analytical Chemistry, 2009, 81, 551-556.	6.5	17
77	Hybrid Organicâ^'Inorganic Mesostructured Membranes: Interfaces and Organization at Different Length Scales. Journal of Physical Chemistry C, 2010, 114, 11730-11740.	3.1	17
78	Controlling the Processing of Mesoporous Titania Films by in Situ FTIR Spectroscopy: Getting Crystalline Micelles into the Mesopores. Journal of Physical Chemistry C, 2010, 114, 10806-10811.	3.1	17
79	Strain-driven self-rolling of hybrid organic–inorganic microrolls: interfaces with self-assembled particles. NPG Asia Materials, 2012, 4, e22-e22.	7.9	17
80	Defect-assisted photoluminescence in hexagonal boron nitride nanosheets. 2D Materials, 2020, 7, 045023.	4.4	17
81	Polypeptide binding to mesostructured titania films. Microporous and Mesoporous Materials, 2011, 142, 1-6.	4.4	16
82	Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing. Materials, 2018, 11, 1674.	2.9	16
83	Time Resolved IR and X-Ray Simultaneous Spectroscopy: New Opportunities for the Analysis of Fast Chemical-Physical Phenomena in Materials Science. Acta Physica Polonica A, 2009, 115, 489-500.	0.5	16
84	In-situ study of sol–gel processing by time-resolved infrared spectroscopy. Journal of Sol-Gel Science and Technology, 2008, 48, 253-259.	2.4	15
85	Structural Evolution during Evaporation of a 3-Glycidoxypropyltrimethoxysilane Film Studied in Situ by Time Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 10438-10444.	2.5	15
86	Introducing Ti-GERS: Raman Scattering Enhancement in Graphene-Mesoporous Titania Films. Journal of Physical Chemistry Letters, 2015, 6, 3149-3154.	4.6	15
87	Carbon dots in ZnO macroporous films with controlled photoluminescence through defects engineering. RSC Advances, 2016, 6, 55393-55400.	3.6	15
88	An alternative sol–gel route for the preparation of thin films in CeO2–TiO2 binary system. Thin Solid Films, 2010, 518, 1653-1657.	1.8	14
89	Solâ€toâ€Gel Transition in Fast Evaporating Systems Observed by in Situ Timeâ€Resolved Infrared Spectroscopy. ChemPhysChem, 2015, 16, 1933-1939.	2.1	14
90	Ferrates for water remediation. Reviews in Environmental Science and Biotechnology, 2017, 16, 15-35.	8.1	14

#	Article	IF	CITATIONS
91	Microfabrication of mesoporous silica encapsulated enzymes using deep X-ray lithography. Journal of Materials Chemistry, 2012, 22, 16191.	6.7	13
92	Nanoparticles in mesoporous films, a happy marriage for materials science. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	13
93	Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers. Nanoscale, 2021, 13, 16465-16476.	5.6	13
94	Photocurable silica hybrid organic–inorganic films for photonic applications. Journal of Sol-Gel Science and Technology, 2007, 44, 59-64.	2.4	12
95	Application of Terahertz Spectroscopy to Time-Dependent Chemical-Physical Phenomena. Journal of Physical Chemistry A, 2009, 113, 9418-9423.	2.5	12
96	Boron Nitride–Titania Mesoporous Film Heterostructures. Langmuir, 2021, 37, 5348-5355.	3.5	12
97	Classification of Unifloral Honeys from SARDINIA (Italy) by ATR-FTIR Spectroscopy and Random Forest. Molecules, 2021, 26, 88.	3.8	12
98	Bottom-up and top-down approach for periodic microstructures on thin oxide films by controlled photo-activated chemical processes. Journal of Sol-Gel Science and Technology, 2008, 48, 182-186.	2.4	11
99	Blue-emitting mesoporous films prepared via incorporation of luminescent Schiff base zinc(II) complex. Journal of Sol-Gel Science and Technology, 2008, 47, 283-289.	2.4	11
100	Self-Assembled Mesoporous Silicaâ^'Germania Films. Chemistry of Materials, 2008, 20, 3259-3265.	6.7	11
101	Coffee stain-driven self-assembly of mesoporous rings. Microporous and Mesoporous Materials, 2012, 163, 356-362.	4.4	11
102	Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges. Journal of Synchrotron Radiation, 2012, 19, 586-590.	2.4	11
103	Hard X-rays and soft-matter: processing of sol–gel films from a top down route. Journal of Sol-Gel Science and Technology, 2014, 70, 236-244.	2.4	11
104	Tuning the phase transition of ZnO thin films through lithography: an integrated bottom-up andÂtop-down processing. Journal of Synchrotron Radiation, 2015, 22, 165-171.	2.4	11
105	In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray. Journal of Sol-Gel Science and Technology, 2016, 79, 295-302.	2.4	11
106	Mesoscale organization of titania thin films enables oxygen sensing at room temperature. Journal of Materials Chemistry C, 2017, 5, 11815-11823.	5.5	11
107	CeO _{<i>x</i>} /TiO ₂ (Rutile) Nanocomposites for the Low-Temperature Dehydrogenation of Ethanol to Acetaldehyde: A Diffuse Reflectance Infrared Fourier Transform Spectroscopy–Mass Spectrometry Study. ACS Applied Nano Materials, 2019, 2, 3434-3443.	5.0	11
108	How porosity affects the emission of fluorescent carbon dot-silica porous composites. Microporous and Mesoporous Materials, 2020, 305, 110302.	4.4	11

#	Article	IF	CITATIONS
109	Thermal Induced Polymerization of <scp>l</scp> ‣ysine forms Branched Particles with Blue Fluorescence. Macromolecular Chemistry and Physics, 2021, 222, 2100242.	2.2	11
110	Infrared and X-ray simultaneous spectroscopy: a novel conceptual beamline design for time resolved experiments. Analytical and Bioanalytical Chemistry, 2010, 397, 2095-2108.	3.7	10
111	Selective detection of organophosphate through molecularly imprinted GERSâ€active hybrid organic–inorganic materials. Journal of Raman Spectroscopy, 2018, 49, 189-197.	2.5	10
112	Lighting up Eu ³⁺ luminescence through remote sensitization in silica nanoarchitectures. Journal of Materials Chemistry C, 2018, 6, 7479-7486.	5.5	10
113	Polymerizationâ€Driven Photoluminescence in Alkanolamineâ€Based Câ€Dots. Chemistry - A European Journal, 2021, 27, 2543-2550.	3.3	10
114	Real-time quantitative detection of styrene in atmosphere in presence of other volatile-organic compounds using a portable device. Talanta, 2021, 233, 122510.	5.5	10
115	Application of IR and UV–VIS spectroscopies and multivariate analysis for the classification of waste vegetable oils. Resources, Conservation and Recycling, 2022, 178, 106088.	10.8	10
116	Pore-confined synthesis of mesoporous nanocrystalline La–Ce phosphate films for sensing applications. Journal of Materials Chemistry, 2012, 22, 20498.	6.7	9
117	Silica-graphene porous nanocomposites for environmental remediation: A critical review. Journal of Environmental Management, 2021, 278, 111519.	7.8	9
118	Getting order in mesostructured thin films, from pore organization to crystalline walls, the case of 3-glycidoxypropyltrimethoxysilane. Physical Chemistry Chemical Physics, 2015, 17, 10679-10686.	2.8	8
119	Phenyl-modified hybrid organic-inorganic microporous films as high efficient platforms for styrene sensing. Microporous and Mesoporous Materials, 2020, 294, 109877.	4.4	8
120	Reversible Aggregation of Molecular-Like Fluorophores Driven by Extreme pH in Carbon Dots. Materials, 2020, 13, 3654.	2.9	8
121	Highly Photostable Carbon Dots from Citric Acid for Bioimaging. Materials, 2022, 15, 2395.	2.9	8
122	New data on the presence of celestite into fossil bones from the uppermost Cretaceous MolÃ-del Baró-1 site (Spain) and an alternative hypothesis on its origin. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 119, 41-49.	2.9	7
123	Fulleropyrrolidine-functionalized ceria nanoparticles as a tethered dual nanosystem with improved antioxidant properties. Nanoscale Advances, 2020, 2, 2387-2396.	4.6	7
124	Improving the Photocatalytic Activity of Mesoporous Titania Films through the Formation of WS2/TiO2 Nano-Heterostructures. Nanomaterials, 2022, 12, 1074.	4.1	7
125	Mesostructured self-assembled silica films with reversible thermo-photochromic properties. Microporous and Mesoporous Materials, 2009, 120, 375-380.	4.4	6
126	Absolute emission quantum yield determination of self-assembled mesoporous titania films grafted with a luminescent zinc complex. Inorganic Chemistry Communication, 2009, 12, 237-239.	3.9	5

#	Article	IF	CITATIONS
127	New opportunity to investigate physico-chemical phenomena: time-resolved X-ray and IR concurrent analysis. Rendiconti Lincei, 2011, 22, 59-79.	2.2	5
128	Micropattern Formation by Molecular Migration via UVâ€induced Dehydration of Block Copolymers. Advanced Functional Materials, 2014, 24, 2801-2809.	14.9	5
129	Hard X-rays for processing hybrid organic–inorganic thick films. Journal of Synchrotron Radiation, 2016, 23, 267-273.	2.4	5
130	Time-resolved techniques for infrared and terahertz characterization with synchrotron radiation of evaporating systems. Rendiconti Lincei, 2011, 22, 81-91.	2.2	4
131	Responsive microstructures on organic–inorganic hybrid films. Journal of Sol-Gel Science and Technology, 2014, 70, 272-277.	2.4	4
132	Engineering the surface of hybrid organic–inorganic films with orthogonal grafting of oxide nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4
133	New insights about the presence of celestite into fossil bones from MolÃ-del Baró 1 site (Isona i Conca) Tj ETQq1	1 0.7843 2.3	314 rgBT /0
134	Magnetic core–shell nanoparticles coated with a molecularly imprinted organogel for organophosphate hydrolysis. Journal of Sol-Gel Science and Technology, 2016, 79, 395-404.	2.4	4
135	Reactivity of silanol group on siloxane oligomers for designing molecular structure and surface wettability. Journal of Sol-Gel Science and Technology, 2021, 97, 734-742.	2.4	4
136	Engineering UV-emitting defects in h-BN nanodots by a top-down route. Applied Surface Science, 2021, 567, 150727.	6.1	4
137	Synchrotron radiation - a brilliant source for solid-state research in the infrared energy domain. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1999-2007.	0.8	3
138	Simultaneous in situ and Time-Resolved Study of Hierarchical Porous Films Templated by Salt Nanocrystals and Self-Assembled Micelles. Journal of Physical Chemistry C, 2011, 115, 12702-12707.	3.1	3
139	Fluorescence-based selective nitrite ion sensing by amino-capped carbon dots. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100573.	2.9	3
140	Harnessing Molecular Fluorophores in the Carbon Dots Matrix: The Case of Safranin O. Nanomaterials, 2022, 12, 2351.	4.1	3
141	Photoluminescence of zinc oxide mesostructured films doped with Rhodamine 6G. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 30-35.	3.9	2
142	Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection. ACS Omega, 2022, 7, 5670-5678.	3.5	2
143	Controlling shape and dimensions of pores in organic–inorganic films: nanocubes and nanospheres. New Journal of Chemistry, 2011, 35, 1624.	2.8	1
144	Investigations of time-dependent chemical-physical phenomena with THz spectroscopy. , 2010, , .		0

9

#	Article	IF	CITATIONS
145	Greener Chemistry for Hybrid Materials, Alcoholâ€Free Synthesis with an Epoxyâ€Cyclohexyl Precursor. Macromolecular Materials and Engineering, 2017, 302, 1600394.	3.6	О
146	Ce Doping Boosts the Thermo―and Photocatalytic Oxidation of CO at Low Temperature in TiZrO 4 Solid Solutions. Advanced Materials Interfaces, 2021, 8, 2100532.	3.7	0
147	3D Spatially Controlled Chemical Functionalization on Alumina Membranes. Science of Advanced Materials, 2014, 6, 1520-1524.	0.7	Ο
148	Graphene and Carbon Dots in Mesoporous Materials. , 2016, , 1-30.		0
149	Graphene and Carbon Dots in Mesoporous Materials. , 2018, , 2339-2368.		0