
Ehsan Ghasali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9101040/publications.pdf Version: 2024-02-01

FHSAN CHASALL

#	Article	IF	CITATIONS
1	Microstructure and phase formation of mullite-Pr6O11 composite prepared by spark plasma sintering. Journal of Rare Earths, 2023, 41, 283-289.	2.5	3
2	Microstructure and mechanical properties of YSZ-alumina composites designed for thermal barrier coatings. Materials at High Temperatures, 2021, 38, 23-30.	0.5	7
3	Production of V2C MXene using a repetitive pattern of V2AlC MAX phase through microwave heating of Al-V2O5-C system. Applied Surface Science, 2021, 542, 148538.	3.1	48
4	Luminescent film: Biofouling investigation of tetraphenylethylene blended polyethersulfone ultrafiltration membrane. Chemosphere, 2021, 267, 128871.	4.2	26
5	Effects of vanadium and titanium addition on the densification, microstructure and mechanical properties of WC-Co cermets. Ceramics International, 2021, 47, 14270-14279.	2.3	12
6	Characterization of mullite-Nd2O3 composite prepared through spark plasma sintering. Ceramics International, 2021, 47, 16200-16207.	2.3	16
7	Effects of 211 and 413 ordering on the corrosion behavior of V-Al-C MAX phases prepared by spark plasma sintering. Journal of the European Ceramic Society, 2021, 41, 4774-4787.	2.8	24
8	Using metallic additives as a bonding layer to produce Ti-based laminated composites via spark plasma sintering. Journal of Science: Advanced Materials and Devices, 2021, 6, 435-445.	1.5	2
9	A nanostructural approach to the interfacial phenomena in spark plasma sintered TiB2 ceramics with vanadium and graphite additives. Composites Part B: Engineering, 2021, 222, 109069.	5.9	10
10	Study of the potential effect of spark plasma sintering on the preparation of complex FGM/laminated WC-based cermet. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105328.	1.7	16
11	Enhanced optical properties and photodetection behavior of ZnS thin film deposited by electron beam evaporation upon doping with europium oxide. Ceramics International, 2020, 46, 28382-28389.	2.3	20
12	The effects of metallic additives on the microstructure and mechanical properties of WC-Co cermets prepared by microwave sintering. Ceramics International, 2020, 46, 29199-29206.	2.3	21
13	Chromium carbide, carbon nano tubes and carbon fibers reinforced magnesium matrix hybrid composites prepared by spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139662.	2.6	11
14	Preparation of Ag/reduced graphene oxide reinforced copper matrix composites through spark plasma sintering: An investigation of microstructure and mechanical properties. Ceramics International, 2020, 46, 13569-13579.	2.3	22
15	Improved electrochemical and mechanical performance of WC-Co cemented carbide by replacing a part of Co with Al2O3. Journal of Alloys and Compounds, 2020, 823, 153857.	2.8	34
16	Development of Metal Matrix Composites and Nanocomposites Via Double-Pressing Double-Sintering (DPDS) Method. Materials Today Communications, 2020, 25, 101245.	0.9	18
17	Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review. Materials and Manufacturing Processes, 2020, 35, 303-327.	2.7	52
18	Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceramics International, 2019, 45, 20844-20854.	2.3	148

EHSAN GHASALI

#	Article	IF	CITATIONS
19	ANOVA Design for the Optimization of TiO2 Coating on Polyether Sulfone Membranes. Molecules, 2019, 24, 2924.	1.7	62
20	Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceramics International, 2019, 45, 16288-16296.	2.3	160
21	Investigation on in-situ formed Al3V-Al-VC nano composite through conventional, microwave and spark plasma sintering. Heliyon, 2019, 5, e01754.	1.4	15
22	Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceramics International, 2019, 45, 16015-16021.	2.3	143
23	Preparation of Ti-based laminated composites through spark plasma sintering with different carbon sources as the bonding layer. Ceramics International, 2019, 45, 14045-14057.	2.3	16
24	An investigation into the microstructure and mechanical properties of V2AlC MAX phase prepared by microwave sintering. Journal of Alloys and Compounds, 2019, 795, 291-303.	2.8	33
25	Unexpected SiC nanowires growth during spark plasma sintering of WC-10Si: A comparative study on phase formation and microstructure properties against WC-10Co cermet. Journal of Alloys and Compounds, 2019, 786, 938-952.	2.8	22
26	Preparation of in-situ formed TiN0.3-Ti5Si3-TiN composites through reactive spark plasma sintering of Ti and Si3N4. Ceramics International, 2019, 45, 6477-6483.	2.3	12
27	Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Materials Chemistry and Physics, 2019, 225, 331-339.	2.0	59
28	Spark plasma sintering of TiN ceramics codoped with SiC and CNT. Ceramics International, 2019, 45, 3207-3216.	2.3	99
29	Super hard carbon microtubes derived from natural cotton for development of high performance titanium composites. Journal of Alloys and Compounds, 2019, 775, 601-616.	2.8	37
30	Ultra-low temperature fabrication of vanadium carbide reinforced aluminum nano composite through spark plasma sintering. Journal of Alloys and Compounds, 2018, 753, 433-445.	2.8	37
31	Comparison of spark plasma and microwave sintering of mullite based composite: Mullite/Ta2O5 reaction. Ceramics International, 2018, 44, 13176-13181.	2.3	31
32	TiO ₂ ceramic particles-reinforced aluminum matrix composite prepared by conventional, microwave, and spark plasma sintering. Journal of Composite Materials, 2018, 52, 2609-2619.	1.2	23
33	Porous and non-porous alumina reinforced magnesium matrix composite through microwave and spark plasma sintering processes. Materials Chemistry and Physics, 2018, 212, 252-259.	2.0	28
34	Spark plasma sintering of WC-based cermets/titanium and vanadium added composites: A comparative study on the microstructure and mechanical properties. Ceramics International, 2018, 44, 10646-10656.	2.3	26
35	Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archives of Civil and Mechanical Engineering, 2018, 18, 1042-1054.	1.9	72
36	Mechanical and microstructural properties of WC-based cermets: A comparative study on the effect of Ni and Mo binder phases. Ceramics International, 2018, 44, 2283-2291.	2.3	49

Ehsan Ghasali

#	Article	IF	CITATIONS
37	Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite. Ceramics International, 2018, 44, 18078-18083.	2.3	85
38	Preparation of mullite/B4C composites: A comparative study on the effect of heating methods. Ceramics International, 2018, 44, 18743-18751.	2.3	20
39	Oxidation-Protective Coatings for Carbon-Carbon Composites. Advances in Chemical and Materials Engineering Book Series, 2018, , 429-446.	0.2	1
40	Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process. Journal of Alloys and Compounds, 2017, 705, 283-289.	2.8	52
41	Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering. Journal of Alloys and Compounds, 2017, 697, 200-207.	2.8	98
42	Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering. Journal of Asian Ceramic Societies, 2017, 5, 472-478.	1.0	30
43	Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy. Materials Today Communications, 2017, 13, 221-231.	0.9	35
44	Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing, 2017, 92, 70-96.	3.8	406
45	Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. Journal of Alloys and Compounds, 2017, 690, 512-518.	2.8	78
46	Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods. Materials, 2017, 10, 1255.	1.3	53
47	Microwave Sintering of Aluminum-ZrB2 Composite: Focusing on Microstructure and Mechanical Properties. Materials Research, 2016, 19, 765-769.	0.6	39
48	Effect of Heating Method on Microstructure and Mechanical Properties of Zircon Reinforced Aluminum Composites. Materials Research, 2016, 19, 1443-1448.	0.6	36
49	Low Temperature Sintering of Aluminum-Zircon Metal Matrix Composite Prepared by Spark Plasma Sintering. Materials Research, 2016, 19, 1189-1192.	0.6	34
50	Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. Journal of Alloys and Compounds, 2016, 688, 527-533.	2.8	73
51	Evaluation of hot corrosion behavior of plasma sprayed thermal barrier coatings with graded intermediate layer and double ceramic top layer. Surface and Coatings Technology, 2016, 288, 36-45.	2.2	43
52	Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. Journal of Alloys and Compounds, 2016, 666, 366-371.	2.8	87
53	Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 135-149.	2.6	126
54	Mechanical and microstructure comparison between microwave and spark plasma sintering of Al–B4C composite. Journal of Alloys and Compounds, 2016, 655, 93-98.	2.8	71

Ehsan Ghasali

#	Article	IF	CITATIONS
55	WC-Co Particles Reinforced Aluminum Matrix by Conventional and Microwave Sintering. Materials Research, 2015, 18, 1197-1202.	0.6	42
56	Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 27-30.	2.6	74
57	Development empirical-intelligent relationship between plasma spray parameters and coating performance of Yttria-Stabilized Zirconia. International Journal of Advanced Manufacturing Technology, 2015, 76, 1031-1045.	1.5	45
58	Investigation on microstructural and mechanical properties of B4C–aluminum matrix composites prepared by microwave sintering. Journal of Materials Research and Technology, 2015, 4, 411-415.	2.6	88
59	Statistical analysis and multiobjective optimization of process parameters in plasma spraying of partially stabilized zirconia. International Journal of Advanced Manufacturing Technology, 2014, 75, 739-753.	1.5	38