Marco Bellini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/910075/publications.pdf Version: 2024-02-01

MARCO RELLINI

#	Article	IF	CITATIONS
1	Recent developments in Pd-CeO2 nano-composite electrocatalysts for anodic reactions in anion exchange membrane fuel cells. Electrochemistry Communications, 2022, 135, 107219.	2.3	15
2	Remarkable stability of a molecular ruthenium complex in PEM water electrolysis. Chemical Science, 2022, 13, 3748-3760.	3.7	11
3	Waste Face Surgical Mask Transformation into Crude Oil and Nanostructured Electrocatalysts for Fuel Cells and Electrolyzers. ChemSusChem, 2022, 15, .	3.6	26
4	Synergy between Nickel Nanoparticles and N-Enriched Carbon Nanotubes Enhances Alkaline Hydrogen Oxidation and Evolution Activity. ACS Applied Nano Materials, 2021, 4, 3586-3596.	2.4	14
5	Hydrogen and chemicals from alcohols through electrochemical reforming by Pd-CeO2/C electrocatalyst. Inorganica Chimica Acta, 2021, 518, 120245.	1.2	14
6	Interlayer Coordination of Pd–Pd Units in Exfoliated Black Phosphorus. Journal of the American Chemical Society, 2021, 143, 10088-10098.	6.6	16
7	3D titania nanotube array support for water electrolysis palladium catalysts. Electrochimica Acta, 2021, 383, 138338.	2.6	6
8	Titanium dioxide nanomaterials in electrocatalysis for energy. Current Opinion in Electrochemistry, 2021, 28, 100720.	2.5	19
9	Electrochemical reactor for sustainable transformation of bio-mass derived allyl alcohol into acrylate and pure hydrogen. Inorganica Chimica Acta, 2021, 525, 120488.	1.2	4
10	Phosphate stabilized PdCoP@Nifoam catalyst for self-pressurized H2 production from the electrochemical reforming of ethanol at 150°C. Journal of Catalysis, 2020, 382, 237-246.	3.1	5
11	Production of formate by CO ₂ electrochemical reduction and its application in energy storage. Sustainable Energy and Fuels, 2020, 4, 277-284.	2.5	69
12	Integration of a Pd-CeO ₂ /C Anode with Pt and Pt-Free Cathode Catalysts in High Power Density Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 10209-10214.	2.5	29
13	Synthesis of CeO <i>_x</i> â€Decorated Pd/C Catalysts by Controlled Surface Reactions for Hydrogen Oxidation in Anion Exchange Membrane Fuel Cells. Advanced Functional Materials, 2020, 30, 2002087.	7.8	58
14	Gold nanoparticles onto cerium oxycarbonate as highly efficient catalyst for aerobic allyl alcohol oxidation. Catalysis Communications, 2020, 140, 105989.	1.6	4
15	Palladium–Ceria Catalysts with Enhanced Alkaline Hydrogen Oxidation Activity for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4999-5008.	2.5	56
16	A Gold–Palladium Nanoparticle Alloy Catalyst for CO Production from CO 2 Electroreduction. Energy Technology, 2019, 7, 1800859.	1.8	14
17	Nanostructured carbon supported Pd-ceria as anode catalysts for anion exchange membrane fuel cells fed with polyalcohols. Inorganica Chimica Acta, 2018, 470, 213-220.	1.2	15
18	Hydrogen production from the electrooxidation of methanol and potassium formate in alkaline media on carbon supported Rh and Pd nanoparticles. Inorganica Chimica Acta, 2018, 470, 263-269.	1.2	19

Marco Bellini

#	Article	IF	CITATIONS
19	Energy Production and Storage Promoted by Organometallic Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 4393-4412.	1.0	24
20	Effect of Electrode Shape and Flow Conditions on the Electrochemical Detection with Band Microelectrodes. Sensors, 2018, 18, 3196.	2.1	8
21	Energy Production and Storage Promoted by Organometallic Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 4392-4392.	1.0	1
22	Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer. Energies, 2018, 11, 369.	1.6	36
23	A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W cm ^{â^'2} at 80 °C. Journal of Materials Chemistry A, 2018, 6, 15404-15412.	5.2	177
24	Electrochemical Coproduction of Acrylate and Hydrogen from 1,3-Propandiol. ACS Sustainable Chemistry and Engineering, 2017, 5, 6090-6098.	3.2	23
25	Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols. RSC Advances, 2017, 7, 13971-13978.	1.7	57
26	Hydrogen and Chemicals from Renewable Alcohols by Organometallic Electroreforming. ChemCatChem, 2017, 9, 746-750.	1.8	22
27	Energy efficiency of platinum-free alkaline direct formate fuel cells. Applied Energy, 2016, 175, 479-487.	5.1	44
28	Performance Evaluation of a Platinumâ€Free Microscale Alkaline Direct Ethanol Fuel Cell Operating for Long Periods. Energy Technology, 2016, 4, 1119-1124.	1.8	5
29	Heat treated carbon supported iron(<scp>ii</scp>)phthalocyanine oxygen reduction catalysts: elucidation of the structure–activity relationship using X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 33142-33151.	1.3	39
30	Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming. Catalysis Science and Technology, 2016, 6, 6870-6878.	2.1	42
31	Electrochemical Behavior of TiO _{<i>x</i>} C _{<i>y</i>} as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders. ACS Applied Materials & Interfaces, 2016, 8, 716-725.	4.0	30
32	Energy Efficiency of Alkaline Direct Ethanol Fuel Cells Employing Nanostructured Palladium Electrocatalysts. ChemCatChem, 2015, 7, 2214-2221.	1.8	58
33	Deactivation of Palladium Electrocatalysts for Alcohols Oxidation in Basic Electrolytes. Electrochimica Acta, 2015, 177, 100-106.	2.6	34
34	Direct Alcohol Fuel Cells: Toward the Power Densities of Hydrogenâ€Fed Proton Exchange Membrane Fuel Cells. ChemSusChem, 2015, 8, 524-533.	3.6	56
35	Energy and Chemicals from the Selective Electrooxidation of Renewable Diols by Organometallic Fuel Cells. ChemSusChem, 2014, 7, 2432-2435.	3.6	27
36	Energy & Chemicals from Renewable Resources by Electrocatalysis. Journal of the Electrochemical Society, 2014, 161, D3032-D3043.	1.3	18

#	Article	IF	CITATIONS
37	Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols. Journal of Energy Chemistry, 2013, 22, 296-304.	7.1	33