Miroslav Michlicek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/910060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Materials and Design, 2017, 132, 257-265.	7.0	45
2	Deposition of Functional Plasma Polymers Influenced by Reactor Geometry in Capacitively Coupled Discharges. Plasma Processes and Polymers, 2016, 13, 279-286.	3.0	40
3	Carboxyl-rich coatings deposited by atmospheric plasma co-polymerization of maleic anhydride and acetylene. Surface and Coatings Technology, 2016, 295, 37-45.	4.8	37
4	Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Polymers, 2020, 12, 1403.	4.5	34
5	Plasma Enhanced CVD of Organosilicon Thin Films on Electrospun Polymer Nanofibers. Plasma Processes and Polymers, 2015, 12, 1231-1243.	3.0	33
6	XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Applied Surface Science, 2017, 394, 578-585.	6.1	33
7	Grafting of carboxyl groups using CO2/C2H4/Ar pulsed plasma: Theoretical modeling and XPS derivatization. Applied Surface Science, 2018, 435, 1220-1227.	6.1	27
8	Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Processes and Polymers, 2017, 14, 1600123.	3.0	26
9	Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Scientific Reports, 2020, 10, 9357.	3.3	25
10	Homogeneity and penetration depth of atmospheric pressure plasma polymerization onto electrospun nanofibrous mats. Applied Surface Science, 2019, 471, 835-841.	6.1	18
11	Determination of NH 2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde. Applied Surface Science, 2017, 414, 390-397.	6.1	16
12	TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity. ACS Applied Materials & amp; Interfaces, 2019, 11, 28699-28719.	8.0	16
13	Deposition penetration depth and sticking probability in plasma polymerization of cyclopropylamine. Applied Surface Science, 2021, 540, 147979.	6.1	15
14	Analysis of epoxy functionalized layers synthesized by plasma polymerization of allyl glycidyl ether. Physical Chemistry Chemical Physics, 2018, 20, 20070-20077.	2.8	13
15	Molecular dynamics simulation of amine groups formation during plasma processing of polystyrene surfaces. Plasma Sources Science and Technology, 2020, 29, 105020.	3.1	9
16	Low pressure plasmachemical processing of multi-walled carbon nanotubes for the production of polyurethane composite films with improved mechanical properties. Thin Solid Films, 2013, 538, 7-15.	1.8	6
17	Amine modification of calcium phosphate by low-pressure plasma for bone regeneration. Scientific Reports, 2021, 11, 17870.	3.3	4