Tai-Rong Kuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100530/publications.pdf

Version: 2024-02-01

88 papers

4,165 citations

35 h-index 62 g-index

88 all docs 88 docs citations

times ranked

88

5149 citing authors

#	Article	IF	CITATIONS
1	A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites. Advanced Composites and Hybrid Materials, 2022, 5, 948-959.	21.1	46
2	A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering. Advanced Composites and Hybrid Materials, 2022, 5, 1376-1384.	21.1	34
3	Pressure-induced flow processing behind the superior mechanical properties and heat-resistance performance of poly(butylene succinate). E-Polymers, 2022, 22, 156-164.	3.0	7
4	External flow-induced highly oriented and dense nanohybrid shish-kebabs: A strategy for achieving high performance in poly (lactic acid) composites. Composites Communications, 2022, 29, 101042.	6.3	26
5	Enhanced aging resistance of poly(Îμ-caprolactone)/brewers' spent grain composites. Polimery, 2022, 67, 3-12.	0.7	4
6	A comparison study of hyaluronic acid hydrogel exquisite micropatterns with photolithography and light-cured inkjet printing methods. E-Polymers, 2022, 22, 332-341.	3.0	2
7	Eco-friendly biodegradable polymers: Sustainable future. Polymers From Renewable Resources, 2022, 13, 71-79.	1.3	6
8	Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation. Journal of Supercritical Fluids, 2022, 188, 105653.	3.2	14
9	Recent advances in biofluid detection with micro/nanostructured bioelectronic devices. Nanoscale, 2021, 13, 3436-3453.	5.6	12
10	Conductive thermoplastic polyurethane nanocomposite foams derived from a cellulose/MWCNTs aerogel framework: simultaneous enhancement of piezoresistance, strength, and endurance. Journal of Materials Chemistry C, 2021, 9, 13103-13114.	5.5	30
11	Incorporation and optimization of RGO and GO in SSBR/NR composites expands their applicability. Polymers and Polymer Composites, 2021, 29, S411-S421.	1.9	2
12	A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosensors and Bioelectronics, 2021, 178, 113027.	10.1	87
13	Superior mechanical performance of in-situ nanofibrillar HDPE/PTFE composites with highly oriented and compacted nanohybrid shish-kebab structure. Composites Science and Technology, 2021, 207, 108715.	7.8	17
14	MoS2Ânanosheets uniformly grown on polyphosphazene-derived carbon nanospheres for lithium-ion batteries. Surfaces and Interfaces, 2021, 24, 101034.	3.0	5
15	Preparation and properties of thermoplastic polyurethane foams with bimodal structure based on TPU/PDMS blends. Journal of Supercritical Fluids, 2021, 177, 105324.	3.2	13
16	High sound insulation property of prepared polypropylene/polyolefin elastomer blends by combining pressure-induced-flow processing and supercritical CO2 foaming. Composites Communications, 2021, 28, 100958.	6.3	2
17	Intravesical Hydrogels as Drug Reservoirs. Trends in Biotechnology, 2020, 38, 579-583.	9.3	83
18	Fluorescence detection of Escherichia coli on mannose modified ZnTe quantum dots. Chinese Chemical Letters, 2020, 31, 1504-1507.	9.0	35

#	Article	IF	CITATIONS
19	Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. International Journal of Biological Macromolecules, 2020, 147, 1164-1173.	7.5	52
20	Heteroatoms-doped 3D carbon nanosphere cages embedded with MoS2 for lithium-ion battery. Electrochimica Acta, 2020, 332, 135490.	5.2	25
21	Enhanced osseointegration of double network hydrogels via calcium polyphosphate incorporation for bone regeneration. International Journal of Biological Macromolecules, 2020, 151, 1126-1132.	7.5	26
22	Facile fabrication of fully biodegradable and biorenewable poly (lactic acid)/poly (butylene) Tj ETQq0 0 0 rgBT /Ove excellent heat resistance. Polymer Degradation and Stability, 2020, 171, 109044.	erlock 10 T 5.8	ff 50 627 To 33
23	Synthesis of low toxicity metal-organic framework carrier for drug release. Materials Express, 2020, 10, 934-941.	0.5	4
24	Combined treatments of fiber surface etching/silane-coupling for enhanced mechanical strength of aramid fiber-reinforced rubber blends. Materials Chemistry and Physics, 2020, 255, 123486.	4.0	41
25	High-strength, flexible and cycling-stable piezo-resistive polymeric foams derived from thermoplastic polyurethane and multi-wall carbon nanotubes. Composites Part B: Engineering, 2020, 199, 108279.	12.0	68
26	Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran. Polymers, 2020, 12, 1004.	4.5	44
27	Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Composites Science and Technology, 2020, 193, 108116.	7.8	110
28	Synergetic effect of nanoclay and nano-CaCO ₃ hybrid filler systems on the foaming properties and cellular structure of polystyrene nanocomposite foams using supercritical CO ₂ . Frontiers in Forests and Global Change, 2020, 39, 185-202.	1.1	5
29	Effect of dynamic oscillation shear flow intensity on the mechanical and morphological properties of high-density polyethylene: An integrated experimental and molecular dynamics simulation study. Polymer Testing, 2019, 80, 106122.	4.8	11
30	Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO2 Foaming Process. Polymers, 2019, 11, 1852.	4.5	34
31	Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. Polymer, 2019, 170, 65-75.	3.8	51
32	High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: fabrication, in vitro and in vivo biocompatibility evaluation. Composites Science and Technology, 2019, 175, 100-110.	7.8	50
33	High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. Polymer, 2019, 180, 121707.	3.8	81
34	Light-triggered pH/thermal multisensitive polyelectrolyte/ITO glass hybrid electrode. Applied Surface Science, 2019, 464, 273-279.	6.1	7
35	MoS2 decorated lignin-derived hierarchical mesoporous carbon hybrid nanospheres with exceptional Li-ion battery cycle stability. Chinese Chemical Letters, 2019, 30, 197-202.	9.0	36
36	Enhanced sound insulation and mechanical properties based on inorganic fillers/thermoplastic elastomer composites. Journal of Thermoplastic Composite Materials, 2019, 32, 936-950.	4.2	13

#	Article	IF	CITATIONS
37	A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Composites Science and Technology, 2018, 159, 171-179.	7.8	74
38	Double network hydrogel for tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1520.	6.1	104
39	Synthesis of DOPO-HQ-functionalized graphene oxide as a novel and efficient flame retardant and its application on polylactic acid: Thermal property, flame retardancy, and mechanical performance. Journal of Colloid and Interface Science, 2018, 524, 267-278.	9.4	99
40	Polyamide 6 modified polypropylene with remarkably enhanced mechanical performance, thermal properties, and foaming ability ⟨i>via⟨ i> pressureâ€inducedâ€flow processing approach. Advances in Polymer Technology, 2018, 37, 2721-2729.	1.7	18
41	Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties. Electrochimica Acta, 2018, 274, 288-297.	5.2	51
42	Formation of stretched fibrils and nanohybrid shish-kebabs in isotactic polypropylene-based nanocomposites by application of a dynamic oscillatory shear. Chemical Engineering Journal, 2018, 348, 546-556.	12.7	33
43	Lab-on-a-Chip Platforms for Biophysical Studies of Cancer with Single-Cell Resolution. Trends in Biotechnology, 2018, 36, 549-561.	9.3	33
44	Preparation, Properties, and Applications of Graphene-Based Hydrogels. Frontiers in Chemistry, 2018, 6, 450.	3.6	56
45	Ultrasonic processing of MWCNT nanopaper reinforced polymeric nanocomposites. Polymer, 2018, 156, 85-94.	3.8	26
46	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	10.1	47
47	Electrospun poly (butylene succinate)/cellulose nanocrystals bio-nanocomposite scaffolds for tissue engineering: Preparation, characterization and in vitro evaluation. Polymer Testing, 2018, 71, 101-109.	4.8	79
48	Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Materials Letters, 2018, 230, 157-160.	2.6	51
49	Morphological Structure, Rheological Behavior, Mechanical Properties and Sound Insulation Performance of Thermoplastic Rubber Composites Reinforced by Different Inorganic Fillers. Polymers, 2018, 10, 276.	4.5	37
50	Ultra-strong, tough and high wear resistance high-density polyethylene for structural engineering application: A facile strategy towards using the combination of extensional dynamic oscillatory shear flow and ultra-high-molecular-weight polyethylene. Composites Science and Technology, 2018, 167, 301-312.	7.8	29
51	DNA-Coded Fluorescence for Color Painting RNAs. CheM, 2018, 4, 1194-1196.	11.7	5
52	Polystyrene/multi-wall carbon nanotube composite and its foam assisted by ultrasound vibration. Journal of Cellular Plastics, 2017, 53, 273-285.	2.4	5
53	Photoresponsive polyelectrolyte/mesoporous silica hybrid materials with remote-controllable ionic transportation. Chemical Engineering Journal, 2017, 322, 445-453.	12.7	12
54	Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Composites Part B: Engineering, 2017, 123, 112-123.	12.0	62

#	Article	IF	Citations
55	Synthetic Melanin E-Ink. ACS Applied Materials & Synthetic Melanin E-Ink. ACS Applied Melanin	8.0	39
56	Superior Impact Toughness and Excellent Storage Modulus of Poly(lactic acid) Foams Reinforced by Shish-Kebab Nanoporous Structure. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21071-21076.	8.0	69
57	Synthesis and characterization of lignosulfonate-derived hierarchical porous graphitic carbons for electrochemical performances. Microporous and Mesoporous Materials, 2017, 247, 184-189.	4.4	21
58	Strength and modulus improvement of wet-spun cellulose I filaments by sequential physical and chemical cross-linking. Materials and Design, 2017, 136, 45-53.	7.0	33
59	ZIF-8-Based Membranes for Carbon Dioxide Capture and Separation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11204-11214.	6.7	129
60	Improved crystallizability and processability of ultra high molecular weight polyethylene modified by poly(amido amine) dendrimers. Polymer Engineering and Science, 2017, 57, 153-160.	3.1	15
61	Molecular Beacon Nano-Sensors for Probing Living Cancer Cells. Trends in Biotechnology, 2017, 35, 347-359.	9.3	58
62	Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chemical Engineering Journal, 2017, 307, 1017-1025.	12.7	193
63	Glass coating on SiCp/Al composite mirror for ultra-smooth surface. International Journal of Advanced Manufacturing Technology, 2017, 88, 1745-1753.	3.0	5
64	Hierarchical Structured Polymeric Materials in Nanotechnology. International Journal of Polymer Science, 2016, 2016, 1-2.	2.7	0
65	Nanofabrication: Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform (Small 43/2016). Small, 2016, 12, 5914-5914.	10.0	1
66	Enhanced strength and foamability of high-density polyethylene prepared by pressure-induced flow and low-temperature crosslinking. RSC Advances, 2016, 6, 34422-34427.	3.6	18
67	Effect of Nanoclay on Natural Fiber/Polymer Composites. Engineering Materials, 2016, , 175-207.	0.6	0
68	Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon, 2016, 105, 305-313.	10.3	374
69	Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B, 2016, 4, 7204-7219.	5.8	396
70	Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform. Small, 2016, 12, 5971-5980.	10.0	64
71	Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. Journal of Controlled Release, 2016, 243, 160-171.	9.9	152
72	Supercritical CO2 foaming of pressure-induced-flow processed linear polypropylene. Materials and Design, 2016, 93, 509-513.	7.0	43

#	Article	IF	CITATIONS
73	PEG/heparin-decorated lipid–polymer hybrid nanoparticles for long-circulating drug delivery. RSC Advances, 2016, 6, 23279-23287.	3.6	28
74	3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale, 2016, 8, 243-252.	5.6	88
75	Enhanced Photocatalysis of Yittium-Doped TiO ₂ /D-PVA Composites: Degradation of Methyl Orange (MO) and PVC Film. Science of Advanced Materials, 2016, 8, 1286-1292.	0.7	6
76	Recent Progress in Dendrimer-based Gene Delivery Systems. Current Organic Chemistry, 2016, 20, 1820-1826.	1.6	16
77	Delivery of Nanoparticles for Treatment of Brain Tumor. Current Drug Metabolism, 2016, 17, 745-754.	1.2	65
78	Enzyme-responsive Nanoparticles for Anticancer Drug Delivery. Current Nanoscience, 2015, 12, 38-46.	1.2	50
79	Effect of Poly(butylenes succinate) on Poly(lactic acid) Foaming Behavior: Formation of Open Cell Structure. Industrial & Engineering Chemistry Research, 2015, 54, 6199-6207.	3.7	84
80	Preparation of SiCp/Al composite–bismuthate glass material and its application in mirror blanks. RSC Advances, 2015, 5, 52167-52173.	3.6	7
81	Fabrication of Poly(lactic acid)/Graphene Oxide Foams with Highly Oriented and Elongated Cell Structure via Unidirectional Foaming Using Supercritical Carbon Dioxide. Industrial & Dioxide Camp; Engineering Chemistry Research, 2015, 54, 758-768.	3.7	124
82	Preparation of polymeric superhydrophobic surfaces and analysis of their wettability. Heat and Mass Transfer, 2015, 51, 1437-1444.	2.1	2
83	Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature. Polymer Chemistry, 2015, 6, 3529-3536.	3.9	39
84	Effect of nanoporous structure and polymer brushes on the ionic conductivity of poly(methacrylic) Tj ETQq0 0 C) rgβT/Ονε	erlock 10 Tf 50
85	Fabrication of high strength PA6/PP blends with pressure-induced-flow processing. Materials Chemistry and Physics, 2015, 164, 1-5.	4.0	21
86	Effect of heat-treatment on stress relief and dimensional stability behavior of SiCp/Al composite with high SiC content. Materials and Design, 2015, 86, 508-515.	7.0	31
87	Simultaneous reinforcing and toughening of high impact polystyrene with a novel processing method of loop oscillating push–pull molding. Materials Letters, 2014, 123, 55-58.	2.6	12

Effect of poly(ethylene glycol) on the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of macroporous poly(lactic) Tj ETQq0 0 0 rg $^{87}_{2.6}$ /Overlock 10 Tf 50 graph of the properties and foaming behavior of the properties and foaming behavior

6

88