
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous Co ₃ O ₄ and Au/Co ₃ O ₄ Catalysts for Low-Temperature Oxidation of Trace Ethylene. Journal of the American Chemical Society, 2010, 132, 2608-2613.	6.6	463
2	Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A state-of-the-art minireview. Chemical Engineering Journal, 2018, 346, 726-738.	6.6	244
3	Decolorization of Orange II in Aqueous Solution by an Fe(II)/sulfite System: Replacement of Persulfate. Industrial & Engineering Chemistry Research, 2012, 51, 13632-13638.	1.8	204
4	Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. Journal of Hazardous Materials, 2011, 186, 1615-1624.	6.5	188
5	A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface. Journal of Hazardous Materials, 2017, 324, 583-592.	6.5	183
6	Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chemical Engineering Journal, 2009, 149, 281-288.	6.6	166
7	Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Applied Catalysis B: Environmental, 2014, 147, 156-166.	10.8	147
8	Catalytic oxidation of benzyl alcohol on Au or Au–Pd nanoparticles confined in mesoporous silica. Applied Catalysis B: Environmental, 2009, 92, 202-208.	10.8	140
9	Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Separation and Purification Technology, 2009, 66, 84-89.	3.9	126
10	Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceramics International, 2009, 35, 1289-1292.	2.3	120
11	Adsorption and desorption performance of benzene over hierarchically structured carbon–silica aerogel composites. Journal of Hazardous Materials, 2011, 196, 194-200.	6.5	102
12	Comparative Studies on Porous Material-Supported Pd Catalysts for Catalytic Oxidation of Benzene, Toluene, and Ethyl Acetate. Industrial & Engineering Chemistry Research, 2009, 48, 6930-6936.	1.8	101
13	Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Applied Catalysis B: Environmental, 2010, 96, 466-475.	10.8	100
14	Rapid Photooxidation of As(III) through Surface Complexation with Nascent Colloidal Ferric Hydroxide. Environmental Science & Technology, 2014, 48, 272-278.	4.6	100
15	Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Applied Catalysis B: Environmental, 2009, 88, 224-231.	10.8	81
16	Nanoporous Silica-Supported Nanometric Palladium:Â Synthesis, Characterization, and Catalytic Deep Oxidation of Benzene. Environmental Science & Technology, 2005, 39, 1319-1323.	4.6	80
17	Mesoporous carbon-confined Au catalysts with superior activity for selective oxidation of glucose to gluconic acid. Green Chemistry, 2013, 15, 1035.	4.6	72
18	Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chemical Engineering Journal, 2014, 244, 59-67.	6.6	72

#	Article	IF	CITATIONS
19	Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species. Water Research, 2018, 143, 599-607.	5.3	71
20	Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method. Materials Chemistry and Physics, 2008, 112, 47-51.	2.0	69
21	Rapid oxidation of paracetamol by Cobalt(II) catalyzed sulfite at alkaline pH. Catalysis Today, 2018, 313, 155-160.	2.2	69
22	A study on N2O catalytic decomposition over Co/MgO catalysts. Journal of Hazardous Materials, 2009, 163, 1332-1337.	6.5	68
23	Iron-exchanged FAU zeolites: Preparation, characterization and catalytic properties for N2O decomposition. Applied Catalysis A: General, 2008, 344, 131-141.	2.2	66
24	Novel CH ₄ Combustion Catalysts Derived from Cuâ^'Co/Xâ^'Al (X = Fe, Mn, La, Ce) Hydrotalcite-like Compounds. Energy & Fuels, 2008, 22, 2131-2137.	2.5	65
25	Porous Graphitized Carbon for Adsorptive Removal of Benzene and the Electrothermal Regeneration. Environmental Science & Technology, 2012, 46, 12648-12654.	4.6	64
26	Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants. Chemical Engineering Journal, 2018, 353, 542-549.	6.6	63
27	Dispersion–precipitation synthesis of highly active nanosized Co 3 O 4 for catalytic oxidation of carbon monoxide and propane. Applied Surface Science, 2017, 411, 136-143.	3.1	62
28	Mesoporous silica supported cobalt oxide catalysts for catalytic removal of benzene. Journal of Porous Materials, 2008, 15, 163-169.	1.3	59
29	Synthesis and characterization of Pd/ZSM-5/MCM-48 biporous catalysts with superior activity for benzene oxidation. Applied Catalysis A: General, 2010, 382, 167-175.	2.2	59
30	Etching synthesis of iron oxide nanoparticles for adsorption of arsenic from water. RSC Advances, 2016, 6, 15900-15910.	1.7	59
31	Enhanced oxidation of aniline using Fe(III)-S(IV) system: Role of different oxysulfur radicals. Chemical Engineering Journal, 2019, 362, 183-189.	6.6	57
32	Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media. Journal of Hazardous Materials, 2009, 171, 459-464.	6.5	56
33	Sulfite activation by a low-leaching silica-supported copper catalyst for oxidation of As(III) in water at circumneutral pH. Chemical Engineering Journal, 2019, 359, 1518-1526.	6.6	56
34	Tubular activated carbons made from cotton stalk for dynamic adsorption of airborne toluene. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 399-405.	2.7	53
35	Pillared laponite clays-supported palladium catalysts for the complete oxidation of benzene. Journal of Molecular Catalysis A, 2005, 225, 173-179.	4.8	51
36	Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts. Catalysis Communications, 2008, 9, 1874-1877.	1.6	49

#	Article	lF	CITATIONS
37	Efficient Elimination of Trace Ethylene over Nano-Gold Catalyst under Ambient Conditions. Environmental Science & Technology, 2008, 42, 8947-8951.	4.6	49
38	Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation. Materials Research Bulletin, 2006, 41, 406-413.	2.7	47
39	Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. Journal of Environmental Sciences, 2011, 23, 2078-2086.	3.2	45
40	Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: Roles and sources of hydroxyl and hydroperoxyl/superoxide radicals. Journal of Hazardous Materials, 2013, 260, 255-262.	6.5	42
41	Dispersion–precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants. Catalysis Communications, 2013, 31, 52-56.	1.6	42
42	The catalytic role of nascent Cu(OH)2 particles in the sulfite-induced oxidation of organic contaminants. Chemical Engineering Journal, 2019, 363, 329-336.	6.6	42
43	Metal-Free Electro-Activated Sulfite Process for As(III) Oxidation in Water Using Graphite Electrodes. Environmental Science & Technology, 2020, 54, 10261-10269.	4.6	42
44	Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study. Microporous and Mesoporous Materials, 2008, 113, 72-80.	2.2	41
45	Dispersion–precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water. Journal of Colloid and Interface Science, 2015, 445, 93-101.	5.0	40
46	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer–Tropsch Synthesis over Cobalt. Chemistry of Materials, 2012, 24, 972-974.	3.2	38
47	Mesoporous silicalite-1 nanospheres and their properties of adsorption and hydrophobicity. Microporous and Mesoporous Materials, 2010, 129, 30-36.	2.2	35
48	Adsorption of volatile organic compounds by mesoporous graphitized carbon: Enhanced organophilicity, humidity resistance, and mass transfer. Separation and Purification Technology, 2021, 264, 118464.	3.9	35
49	Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. Materials Research Bulletin, 2008, 43, 2599-2606.	2.7	33
50	Catalytic combustion of methane over La2TM0.3Zr1.7O7â^' (TM = Mn, Fe, and Co) pyrochlore oxides. Catalysis Communications, 2009, 10, 1170-1173.	1.6	33
51	CeO2-Co3O4 Catalysts for CO Oxidation. Journal of Rare Earths, 2006, 24, 172-176.	2.5	31
52	Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde. Applied Surface Science, 2016, 364, 75-80.	3.1	31
53	A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanoparticles. Microporous and Mesoporous Materials, 2008, 114, 214-221.	2.2	30
54	Removal of DDT from aqueous solutions using mesoporous silica materials. Journal of Chemical Technology and Biotechnology, 2009, 84, 490-496.	1.6	30

#	Article	IF	CITATIONS
55	Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials. Journal of Hazardous Materials, 2009, 164, 1205-1212.	6.5	29
56	Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. Microporous and Mesoporous Materials, 2010, 133, 115-123.	2.2	28
57	Photooxidation of arsenic(III) to arsenic(V) on the surface of kaolinite clay. Journal of Environmental Sciences, 2015, 36, 29-37.	3.2	25
58	Ammonia synthesis over Cs- or Ba-promoted ruthenium catalyst supported on strontium niobate. Applied Catalysis A: General, 2018, 554, 1-9.	2.2	25
59	Multiple transformation pathways of p -arsanilic acid to inorganic arsenic species in water during UV disinfection. Journal of Environmental Sciences, 2016, 47, 39-48.	3.2	22
60	Inhibited hydrogen poisoning for enhanced activity of promoters-Ru/Sr2Ta2O7 nanowires for ammonia synthesis. Journal of Catalysis, 2020, 389, 556-565.	3.1	21
61	Synthesis of cavity-containing iron oxide nanoparticles by hydrothermal treatment of colloidal dispersion. Materials Letters, 2016, 164, 210-212.	1.3	20
62	Metallic-substrate-supported manganese oxide as Joule-heat-ignition catalytic reactor for removal of carbon monoxide and toluene in air. Chemical Engineering Journal, 2017, 328, 1058-1065.	6.6	20
63	Monolithic bamboo-based activated carbons for dynamic adsorption of toluene. Journal of Porous Materials, 2017, 24, 541-549.	1.3	19
64	Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity. Journal of Colloid and Interface Science, 2009, 339, 160-167.	5.0	17
65	Strengthening arsenite oxidation in water using metal-free ultrasonic activation of sulfite. Chemosphere, 2021, 281, 130860.	4.2	17
66	Electroplated Palladium Catalysts on FeCrAlloy for Joule-Heat-Ignited Catalytic Elimination of Ethylene in Air. Industrial & Engineering Chemistry Research, 2017, 56, 12520-12528.	1.8	16
67	Surface-complexation synthesis of silica-supported high-loading well-dispersed reducible nano-Co3O4 catalysts using CoIII ammine hydroxo complexes. Applied Surface Science, 2018, 442, 83-91.	3.1	15
68	Synthesis of nanosized Al-HMS and its application in deep oxidation of benzene. Catalysis Today, 2010, 158, 427-431.	2.2	14
69	A novel removal strategy for copper and arsenic by photooxidation coupled with coprecipitation: Performance and mechanism. Chemical Engineering Journal, 2020, 401, 126102.	6.6	14
70	Fabrication of large-surface-area graphitized carbons by potassium hydroxide-promoted catalytic graphitization. Materials Research Bulletin, 2021, 140, 111333.	2.7	14
71	Decreasing Co3O4 Particle Sizes by Ammonia-Etching and Catalytic Oxidation of Propane. Catalysis Letters, 2017, 147, 407-415.	1.4	13
72	CO2 methanation over Ru/12CaOâ^™7Al2O3 catalysts: Effect of encaged anions on catalytic mechanism. Applied Catalysis A: General, 2020, 595, 117474.	2.2	13

#	Article	IF	CITATIONS
73	Nanocasting synthesis of graphitized ordered mesoporous carbon using Fe-coated SBA-15 template. Materials Chemistry and Physics, 2013, 138, 484-489.	2.0	12
74	Mesoporous Silica-Supported Manganese Oxides for Complete Oxidation of Volatile Organic Compounds: Influence of Mesostructure, Redox Properties, and Hydrocarbon Dimension. Industrial & Engineering Chemistry Research, 2018, 57, 7374-7382.	1.8	12
75	Visible light-driven oxidation of arsenite, sulfite and thiazine dyes: A new strategy for using waste to treat waste. Journal of Cleaner Production, 2021, 280, 124374.	4.6	12
76	Cs-Promoted ruthenium catalyst supported on Ba5Ta4O15 with abundant oxygen vacancies for ammonia synthesis. Applied Catalysis A: General, 2021, 615, 118058.	2.2	12
77	Oxide of porous graphitized carbon as recoverable functional adsorbent that removes toxic metals from water. Journal of Colloid and Interface Science, 2022, 606, 983-993.	5.0	10
78	A facile TiO2 containing oxygen vacancies and hydroxyl as a Ru-loaded underlay for CO2 hydrogenation to CH4. Applied Surface Science, 2022, 587, 152856.	3.1	10
79	Wet ion exchanged Fe-USY catalyst for effective N2O decomposition. Catalysis Communications, 2008, 9, 1745-1748.	1.6	9
80	Synthesis of porous superparamagnetic iron oxides from colloidal nanoparticles: Effect of calcination temperature and atmosphere. Materials Chemistry and Physics, 2015, 153, 187-194.	2.0	9
81	Preparation and investigation of PD/Tlâ€5BAâ€15 catalysts for catalytic oxidation of benzene. Environmental Progress and Sustainable Energy, 2010, 29, 435-442.	1.3	8
82	Mesoporous iron oxide-silica supported gold catalysts for low-temperature CO oxidation. Science Bulletin, 2014, 59, 4008-4013.	1.7	8
83	Solid surface photochemistry of montmorillonite: mechanisms for the arsenite oxidation under UV-A irradiation. Environmental Science and Pollution Research, 2016, 23, 1035-1043.	2.7	8
84	The epoxidation of allyl alcohol on Ti-complex/MCM-48 catalyst. Microporous and Mesoporous Materials, 2008, 112, 133-137.	2.2	7
85	Catalytic Oxidation of Nitric Oxide to Nitrogen Dioxide on Ru-FAU. Catalysis Letters, 2009, 131, 656-662.	1.4	6
86	Fabrication of Nano- and Micro-Scale UV Imprint Stamp Using Diamond-Like Carbon Coating Technology. Journal of Nanoscience and Nanotechnology, 2006, 6, 3619-3623.	0.9	5
87	Promoting CO2 methanation performance of Ru/TiO2 through Co-activity of exposing (001) facets and oxygen vacancies of TiO2. Materials Science in Semiconductor Processing, 2022, 146, 106677.	1.9	5
88	Adsorption Synthesis of Iron Oxide-Supported Gold Catalyst under Self-Generated Alkaline Conditions for Efficient Elimination of Carbon Monoxide. Catalysts, 2018, 8, 357.	1.6	4
89	Improved ammonia synthesis activity of Ce doped barium tantalate supported Ru catalysts. Catalysis Science and Technology, 2021, 11, 464-468.	2.1	4
90	Calcium Sulfite Solids Activated by Iron for Enhancing As(III) Oxidation in Water. Molecules, 2021, 26, 1154.	1.7	3

п	N,	11	1 N		
	IN.			Ν.	
		,			

#	Article	IF	CITATIONS
91	Promoted and Controllable Self-Assembly of Hydrolyzed Siloxane and Triblock Copolymer under Organic Polyhydroxy Acids. Industrial & Engineering Chemistry Research, 2009, 48, 6308-6314.	1.8	2
	Effects of La Incorporation in		

92 Effects of La Incorporation in Ba₁_{ï¼<I>x</I>}La<I>_x</I>FeAI₁₁O₁₉_{ï¼}<I><SUB> on the Performance of Methane Catalytic Combustion. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 1313-1319.

93	Comparison of hydrolysis and oxidation reactions of carbonyl sulfide on particle matter. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 509-513.	0.8	1
----	---	-----	---