
Randy Allen Albrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 2020, 181, 1036-1045.e9.	28.9	3,572
2	Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus Budding. Cell Host and Microbe, 2015, 18, 723-735.	11.0	868
3	Programming the magnitude and persistence of antibody responses with innate immunity. Nature, 2011, 470, 543-547.	27.8	847
4	Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host Viral RNA Sensor RIG-1. Cell Host and Microbe, 2009, 5, 439-449.	11.0	737
5	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
6	Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586, 113-119.	27.8	672
7	Induction of ICOS ⁺ CXCR3 ⁺ CXCR5 ⁺ T _H Cells Correlates with Antibody Responses to Influenza Vaccination. Science Translational Medicine, 2013, 5, 176ra32.	12.4	547
8	Matrix Protein 2 of Influenza A Virus Blocks Autophagosome Fusion with Lysosomes. Cell Host and Microbe, 2009, 6, 367-380.	11.0	454
9	Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015, 348, 448-453.	12.6	389
10	Transcription Elongation Can Affect Genome 3D Structure. Cell, 2018, 174, 1522-1536.e22.	28.9	369
11	Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3455-3460.	7.1	328
12	Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 2012, 8, e1003059.	4.7	273
13	Suppression of the antiviral response by an influenza histone mimic. Nature, 2012, 483, 428-433.	27.8	269
14	Human Responses to Influenza Vaccination Show Seroconversion Signatures and Convergent Antibody Rearrangements. Cell Host and Microbe, 2014, 16, 105-114.	11.0	246
15	Influenza Viruses Expressing Chimeric Hemagglutinins: Globular Head and Stalk Domains Derived from Different Subtypes. Journal of Virology, 2012, 86, 5774-5781.	3.4	241
16	A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nature Biomedical Engineering, 2021, 5, 815-829.	22.5	228
17	Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza. Journal of Virology, 2009, 83, 1742-1753.	3.4	217
18	Influenza A Virus Transmission Bottlenecks Are Defined by Infection Route and Recipient Host. Cell Host and Microbe, 2014, 16, 691-700.	11.0	215

RANDY ALLEN ALBRECHT

#	Article	IF	CITATIONS
19	A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathogens, 2017, 13, e1006258.	4.7	200
20	Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Modern Pathology, 2021, 34, 1456-1467.	5.5	184
21	Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses. Journal of Virology, 2013, 87, 10435-10446.	3.4	174
22	An In Vitro Microneutralization Assay for SARS oVâ€2 Serology and Drug Screening. Current Protocols in Microbiology, 2020, 58, e108.	6.5	165
23	Innate immune evasion strategies of influenza viruses. Future Microbiology, 2010, 5, 23-41.	2.0	148
24	Host- and Strain-Specific Regulation of Influenza Virus Polymerase Activity by Interacting Cellular Proteins. MBio, 2011, 2, .	4.1	145
25	ICOS+PD-1+CXCR3+ T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination. Scientific Reports, 2016, 6, 26494.	3.3	139
26	H3N2 Influenza Virus Infection Induces Broadly Reactive Hemagglutinin Stalk Antibodies in Humans and Mice. Journal of Virology, 2013, 87, 4728-4737.	3.4	138
27	Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host and Microbe, 2022, 30, 373-387.e7.	11.0	138
28	Defining the antibody cross-reactome directed against the influenza virus surface glycoproteins. Nature Immunology, 2017, 18, 464-473.	14.5	131
29	Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8 + TÂCell Responses. Cell Reports, 2016, 15, 1076-1087.	6.4	130
30	Assessment of Influenza Virus Hemagglutinin Stalk-Based Immunity in Ferrets. Journal of Virology, 2014, 88, 3432-3442.	3.4	128
31	The M Segment of the 2009 New Pandemic H1N1 Influenza Virus Is Critical for Its High Transmission Efficiency in the Guinea Pig Model. Journal of Virology, 2011, 85, 11235-11241.	3.4	127
32	Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection. PLoS Pathogens, 2016, 12, e1005578.	4.7	124
33	NF-κB RelA Subunit Is Crucial for Early IFN-β Expression and Resistance to RNA Virus Replication. Journal of Immunology, 2010, 185, 1720-1729.	0.8	119
34	A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. Npj Vaccines, 2017, 2, 26.	6.0	113
35	Glycosylations in the Globular Head of the Hemagglutinin Protein Modulate the Virulence and Antigenic Properties of the H1N1 Influenza Viruses. Science Translational Medicine, 2013, 5, 187ra70.	12.4	107
36	Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infectious Diseases, The, 2020, 20, 80-91.	9.1	103

#	Article	IF	CITATIONS
37	Constitutive resistance to viral infection in human CD141 ⁺ dendritic cells. Science Immunology, 2017, 2, .	11.9	99
38	Oseltamivir-Resistant Variants of the 2009 Pandemic H1N1 Influenza A Virus Are Not Attenuated in the Guinea Pig and Ferret Transmission Models. Journal of Virology, 2010, 84, 11219-11226.	3.4	94
39	Complete-Proteome Mapping of Human Influenza A Adaptive Mutations: Implications for Human Transmissibility of Zoonotic Strains. PLoS ONE, 2010, 5, e9025.	2.5	85
40	TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell, 2021, 184, 2618-2632.e17.	28.9	80
41	MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Nature Biotechnology, 2013, 31, 844-847.	17.5	77
42	Recombinant IgA Is Sufficient To Prevent Influenza Virus Transmission in Guinea Pigs. Journal of Virology, 2013, 87, 7793-7804.	3.4	73
43	Microbiome disturbance and resilience dynamics of the upper respiratory tract during influenza A virus infection. Nature Communications, 2020, 11, 2537.	12.8	72
44	Differences in Antibody Responses Between Trivalent Inactivated Influenza Vaccine and Live Attenuated Influenza Vaccine Correlate With the Kinetics and Magnitude of Interferon Signaling in Children. Journal of Infectious Diseases, 2014, 210, 224-233.	4.0	69
45	Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets. Journal of Virology, 2016, 90, 3268-3273.	3.4	69
46	Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. Journal of Virology, 2019, 93, .	3.4	65
47	The NS1 Protein of the 1918 Pandemic Influenza Virus Blocks Host Interferon and Lipid Metabolism Pathways. Journal of Virology, 2009, 83, 10557-10570.	3.4	63
48	H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. Journal of Clinical Investigation, 2016, 126, 1482-1494.	8.2	62
49	A Newcastle Disease Virus (NDV) Expressing a Membrane-Anchored Spike as a Cost-Effective Inactivated SARS-CoV-2 Vaccine. Vaccines, 2020, 8, 771.	4.4	61
50	Longitudinal metabolomics of human plasma reveals prognostic markers of COVID-19 disease severity. Cell Reports Medicine, 2021, 2, 100369.	6.5	61
51	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	4.7	61
52	Protection against Lethal Influenza with a Viral Mimic. Journal of Virology, 2013, 87, 8591-8605.	3.4	60
53	One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine, 2014, 32, 355-362.	3.8	59
54	Human Monoclonal Antibodies to Pandemic 1957 H2N2 and Pandemic 1968 H3N2 Influenza Viruses. Journal of Virology, 2012, 86, 6334-6340.	3.4	57

RANDY ALLEN ALBRECHT

#	Article	IF	CITATIONS
55	Experimental Infection of Pigs with the Human 1918 Pandemic Influenza Virus. Journal of Virology, 2009, 83, 4287-4296.	3.4	56
56	The Nucleoprotein of Newly Emerged H7N9 Influenza A Virus Harbors a Unique Motif Conferring Resistance to Antiviral Human MxA. Journal of Virology, 2015, 89, 2241-2252.	3.4	56
57	Divergent H7 Immunogens Offer Protection from H7N9 Virus Challenge. Journal of Virology, 2014, 88, 3976-3985.	3.4	52
58	Moving Forward: Recent Developments for the Ferret Biomedical Research Model. MBio, 2018, 9, .	4.1	52
59	Antigenic sites in influenza H1 hemagglutinin display species-specific immunodominance. Journal of Clinical Investigation, 2018, 128, 4992-4996.	8.2	51
60	Interactive Big Data Resource to Elucidate Human Immune Pathways and Diseases. Immunity, 2015, 43, 605-614.	14.3	49
61	Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species. PLoS Pathogens, 2017, 13, e1006270.	4.7	49
62	The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell, 2017, 169, 679-692.e14.	28.9	48
63	Influenza virus infection causes global RNAPII termination defects. Nature Structural and Molecular Biology, 2018, 25, 885-893.	8.2	48
64	Vaccination With Viral Vectors Expressing Chimeric Hemagglutinin, NP and M1 Antigens Protects Ferrets Against Influenza Virus Challenge. Frontiers in Immunology, 2019, 10, 2005.	4.8	48
65	Sequential Immunization With Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity Against Influenza A Viruses in a Preclinical Ferret Model. Frontiers in Immunology, 2019, 10, 756.	4.8	48
66	Pandemic H1N1 influenza A viruses suppress immunogenic RIPK3-driven dendritic cell death. Nature Communications, 2017, 8, 1931.	12.8	44
67	Mucosal Polyinosinic-Polycytidylic Acid Improves Protection Elicited by Replicating Influenza Vaccines via Enhanced Dendritic Cell Function and T Cell Immunity. Journal of Immunology, 2014, 193, 1324-1332.	0.8	42
68	Clinical and Serologic Responses After a Two-dose Series of High-dose Influenza Vaccine in Plasma Cell Disorders: A Prospective, Single-arm Trial. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 296-304.e2.	0.4	39
69	Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections. Journal of Virology, 2010, 84, 12058-12068.	3.4	36
70	Diminished B-Cell Response After Repeat Influenza Vaccination. Journal of Infectious Diseases, 2019, 219, 1586-1595.	4.0	36
71	Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Reports, 2022, 38, 110508.	6.4	36
72	Flow Cytometric and Cytokine ELISpot Approaches To Characterize the Cell-Mediated Immune Response in Ferrets following Influenza Virus Infection. Journal of Virology, 2016, 90, 7991-8004.	3.4	33

#	Article	IF	CITATIONS
73	Tissue-based SARS-CoV-2 detection in fatal COVID-19 infections: Sustained direct viral-induced damage is not necessary to drive disease progression. Human Pathology, 2021, 114, 110-119.	2.0	32
74	Extrapulmonary tissue responses in cynomolgus macaques (Macaca fascicularis) infected with highly pathogenic avian influenza A (H5N1) virus. Archives of Virology, 2010, 155, 905-914.	2.1	29
75	A Live-Attenuated Prime, Inactivated Boost Vaccination Strategy with Chimeric Hemagglutinin-Based Universal Influenza Virus Vaccines Provides Protection in Ferrets: A Confirmatory Study. Vaccines, 2018, 6, 47.	4.4	28
76	Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses. Journal of Virology, 2015, 89, 10190-10205.	3.4	27
77	Distinct Patterns of B-Cell Activation and Priming by Natural Influenza Virus Infection Versus Inactivated Influenza Vaccination. Journal of Infectious Diseases, 2015, 211, 1051-1059.	4.0	27
78	Immunologic Characterization of a Rhesus Macaque H1N1 Challenge Model for Candidate Influenza Virus Vaccine Assessment. Vaccine Journal, 2014, 21, 1668-1680.	3.1	26
79	Distinct Cross-reactive B-Cell Responses to Live Attenuated and Inactivated Influenza Vaccines. Journal of Infectious Diseases, 2014, 210, 865-874.	4.0	26
80	Interaction of the Equine Herpesvirus 1 EICPO Protein with the Immediate-Early (IE) Protein, TFIIB, and TBP May Mediate the Antagonism between the IE and EICPO Proteins. Journal of Virology, 2003, 77, 2675-2685.	3.4	25
81	The Unique IR2 Protein of Equine Herpesvirus 1 Negatively Regulates Viral Gene Expression. Journal of Virology, 2006, 80, 5041-5049.	3.4	25
82	Mapping the Sequences That Mediate Interaction of the Equine Herpesvirus 1 Immediate-Early Protein and Human TFIIB. Journal of Virology, 2001, 75, 10219-10230.	3.4	24
83	Turkey Versus Guinea Pig Red Blood Cells: Hemagglutination Differences Alter Hemagglutination Inhibition Responses Against Influenza A/H1N1. Viral Immunology, 2014, 27, 174-178.	1.3	23
84	Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nature Microbiology, 2021, 6, 1319-1333.	13.3	23
85	Major Histocompatibility Complex Class II Expression and Hemagglutinin Subtype Influence the Infectivity of Type A Influenza Virus for Respiratory Dendritic Cells. Journal of Virology, 2011, 85, 11955-11963.	3.4	18
86	Host-Specific NS5 Ubiquitination Determines Yellow Fever Virus Tropism. Journal of Virology, 2019, 93,	3.4	18
87	Pandemic influenza virus vaccines boost hemagglutinin stalk-specific antibody responses in primed adult and pediatric cohorts. Npj Vaccines, 2019, 4, 51.	6.0	18
88	The equine herpesvirus 1 EICP27 protein enhances gene expression via an interaction with TATA box-binding protein. Virology, 2004, 324, 311-326.	2.4	17
89	Accumulation of CD11b+Gr-1+ cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses. Archives of Virology, 2013, 158, 1305-1322.	2.1	17
90	Model of influenza A virus infection: Dynamics of viral antagonism and innate immune response. Journal of Theoretical Biology, 2014, 351, 47-57.	1.7	17

#	Article	IF	CITATIONS
91	Differential Requirement for the IKKβ/NF-κB Signaling Module in Regulating TLR- versus RLR-Induced Type 1 IFN Expression in Dendritic Cells. Journal of Immunology, 2014, 193, 2538-2545.	0.8	17
92	Functional Effects of Cardiomyocyte Injury in COVID-19. Journal of Virology, 2022, 96, JVI0106321.	3.4	17
93	Direct interaction of TFIIB and the IE protein of equine herpesvirus 1 is required for maximal trans-activation function. Virology, 2003, 316, 302-312.	2.4	16
94	The EICP27 protein of equine herpesvirus 1 is recruited to viral promoters by its interaction with the immediate-early protein. Virology, 2005, 333, 74-87.	2.4	16
95	Mouse Dendritic Cell (DC) Influenza Virus Infectivity Is Much Lower than That for Human DCs and Is Hemagglutinin Subtype Dependent. Journal of Virology, 2013, 87, 1916-1918.	3.4	15
96	The immunological potency and therapeutic potential of a prototype dual vaccine against influenza and Alzheimer's disease. Journal of Translational Medicine, 2011, 9, 127.	4.4	14
97	Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines, 2021, 9, 40.	4.4	14
98	Real-Time Investigation of a Large Nosocomial Influenza A Outbreak Informed by Genomic Epidemiology. Clinical Infectious Diseases, 2021, 73, e4375-e4383.	5.8	13
99	Effect of Cholecalciferol Supplementation on Inflammation and Cellular Alloimmunity in Hemodialysis Patients: Data from a Randomized Controlled Pilot Trial. PLoS ONE, 2014, 9, e109998.	2.5	13
100	Tox2 is required for the maintenance of GC T _{FH} cells and the generation of memory T _{FH} cells. Science Advances, 2021, 7, eabj1249.	10.3	12
101	A Negative Regulatory Element (Base Pairs â^'204 to â^'177) of the EICPO Promoter of Equine Herpesvirus 1 Abolishes the EICPO Protein's trans -Activation of Its Own Promoter. Journal of Virology, 2004, 78, 11696-11706.	3.4	11
102	1918 and 2009 H1N1 influenza viruses are not pathogenic in birds. Journal of General Virology, 2010, 91, 339-342.	2.9	9
103	Analyses of Cellular Immune Responses in Ferrets Following Influenza Virus Infection. Methods in Molecular Biology, 2018, 1836, 513-530.	0.9	8
104	Substitutions T200A and E227A in the Hemagglutinin of Pandemic 2009 Influenza A Virus Increase Lethality but Decrease Transmission. Journal of Virology, 2013, 87, 6507-6511.	3.4	7
105	Active opioid use does not attenuate the humoral responses to inactivated influenza vaccine. Vaccine, 2016, 34, 1363-1369.	3.8	7
106	The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice. Virus Research, 2014, 188, 97-102.	2.2	6
107	Assessment of Influenza Virus Hemagglutinin Stalk-Specific Antibody Responses. Methods in Molecular Biology, 2018, 1836, 487-511.	0.9	5
108	Viral Determinants in H5N1 Influenza A Virus Enable Productive Infection of HeLa Cells. Journal of Virology, 2020, 94, .	3.4	5

#	Article	IF	CITATIONS
109	A dual vaccine against influenza & Alzheimer's disease failed to enhance anti-β-amyloid antibody responses in mice with pre-existing virus specific memory. Journal of Neuroimmunology, 2014, 277, 77-84.	2.3	4
110	A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells. Infection, Genetics and Evolution, 2016, 41, 279-288.	2.3	4
111	Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine. Microbiology Spectrum, 2022, 10, e0007822.	3.0	4
112	Mass Cytometry Defines Virus-Specific CD4+ T Cells in Influenza Vaccination. ImmunoHorizons, 2020, 4, 774-788.	1.8	3
113	Interaction between NS1 and Cellular MAVS Contributes to NS1 Mitochondria Targeting. Viruses, 2021, 13, 1909.	3.3	2
114	Profiling Selective Packaging of Host RNA and Viral RNA Modification in SARS-CoV-2 Viral Preparations. Frontiers in Cell and Developmental Biology, 2022, 10, 768356.	3.7	2
115	Detection of Velogenic Avian Paramyxoviruses in Rock Doves in New York City, New York. Microbiology Spectrum, 2022, 10, e0206121.	3.0	2
116	Timing of Influenza Vaccine Response in Patients That Receive Autologous Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, S143-S144.	2.0	1
117	Fluzone® High-Dose Influenza Vaccine with a Booster Is Associated with Low Rates of Influenza Infection in Patients with Plasma Cell Disorders. Blood, 2015, 126, 3058-3058.	1.4	1
118	Suppression of Innate Immunity by Orthomyxoviruses. , 0, , 267-286.		1

Suppression of Innate Immunity by Orthomyxoviruses. , 0, , 267-286. 118