List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune Disregulation in Cutaneous Squamous Cell Carcinoma of Patients with Recessive Dystrophic Epidermolysis Bullosa: A Single Pilot Study. Life, 2022, 12, 213.	2.4	6
2	Basal and one-month differed neutrophil, lymphocyte and platelet values and their ratios strongly predict the efficacy of checkpoint inhibitors immunotherapy in patients with advanced BRAF wild-type melanoma. Journal of Translational Medicine, 2022, 20, 159.	4.4	12
3	COVID-19 Sequelae and the Host Proinflammatory Response: An Analysis From the OnCovid Registry. Journal of the National Cancer Institute, 2022, 114, 979-987.	6.3	14
4	Circulating tumor cells from melanoma patients show phenotypic plasticity and metastatic potential in xenograft NOD.CB17 mice. BMC Cancer, 2022, 22, .	2.6	6
5	Bone Metastases in Neuroendocrine Tumors: Molecular Pathogenesis and Implications in Clinical Practice. Neuroendocrinology, 2021, 111, 207-216.	2.5	13
6	The Impairment in Kidney Function in the Oral Anticoagulation Era. A Pathophysiological Insight. Cardiovascular Drugs and Therapy, 2021, 35, 505-519.	2.6	14
7	Effect of concomitant medications with immune-modulatory properties on the outcomes of patients with advanced cancer treated with immune checkpoint inhibitors: development and validation of a novel prognostic index. European Journal of Cancer, 2021, 142, 18-28.	2.8	81
8	Successful treatment with apremilast of severe psoriasis exacerbation during nivolumab therapy for metastatic melanoma. Dermatologic Therapy, 2021, 34, e14653.	1.7	6
9	No Impact of NRAS Mutation on Features of Primary and Metastatic Melanoma or on Outcomes of Checkpoint Inhibitor Immunotherapy: An Italian Melanoma Intergroup (IMI) Study. Cancers, 2021, 13, 475.	3.7	20
10	Prognostic Factors and Current Treatment Strategies for Renal Cell Carcinoma Metastatic to the Brain: An Overview. Cancers, 2021, 13, 2114.	3.7	12
11	The ATM Gene in Breast Cancer: Its Relevance in Clinical Practice. Genes, 2021, 12, 727.	2.4	29
12	Vascular and Cardiac Prognostic Determinants in Patients with Gynecological Cancers: A Six-Year Follow-up Study. Applied Sciences (Switzerland), 2021, 11, 6091.	2.5	1
13	PD-1/PD-L1 checkpoint inhibitors during late stages of life: an ad-hoc analysis from a large multicenter cohort. Journal of Translational Medicine, 2021, 19, 270.	4.4	14
14	Primary Soft Tissue Sarcoma of the Heart: An Emerging Chapter in Cardio-Oncology. Biomedicines, 2021, 9, 774.	3.2	9
15	The Day after Mass COVID-19 Vaccination: Higher Hypermetabolic Lymphadenopathy Detection on PET/CT and Impact on Oncologic Patients Management. Cancers, 2021, 13, 4340.	3.7	11
16	Papillary Meningioma: Case Presentation with Emphasis on Surgical and Medical Therapy of a Rare Variant of Meningioma. Diseases (Basel, Switzerland), 2021, 9, 63.	2.5	0
17	Combination of immunotherapy and other targeted therapies in advanced cutaneous melanoma. Human Vaccines and Immunotherapeutics, 2021, , 1-9.	3.3	5
18	A Lipidomic Approach to Identify Potential Biomarkers in Exosomes From Melanoma Cells With Different Metastatic Potential. Frontiers in Physiology, 2021, 12, 748895.	2.8	21

#	Article	IF	CITATIONS
19	Retrospective Chart Review of Dabrafenib Plus Trametinib in Patients with Metastatic BRAF V600-Mutant Melanoma Treated in the Individual Patient Program (DESCRIBE Italy). Targeted Oncology, 2021, 16, 789-799.	3.6	5
20	COVID-19 in breast cancer patients: a subanalysis of the OnCovid registry. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110534.	3.2	5
21	Extracellular Vesicles and Epigenetic Modifications Are Hallmarks of Melanoma Progression. International Journal of Molecular Sciences, 2020, 21, 52.	4.1	38
22	An Italian Retrospective Survey on Bone Metastasis in Melanoma: Impact of Immunotherapy and Radiotherapy on Survival. Frontiers in Oncology, 2020, 10, 1652.	2.8	10
23	Non-Melanoma Skin Cancers: Biological and Clinical Features. International Journal of Molecular Sciences, 2020, 21, 5394.	4.1	83
24	Liquid Biopsy as a Tool Exploring in Real-Time Both Genomic Perturbation and Resistance to EGFR Antagonists in Colorectal Cancer. Frontiers in Oncology, 2020, 10, 581130.	2.8	7
25	Large Extracellular Vesicles—A New Frontier of Liquid Biopsy in Oncology. International Journal of Molecular Sciences, 2020, 21, 6543.	4.1	17
26	Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. , 2020, 8, e001361.		126
27	Role of Bone Targeting Agents in the Prevention of Bone Metastases from Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 3022.	4.1	11
28	Dual-procedural separation of CTCs in cutaneous melanoma provides useful information for both molecular diagnosis and prognosis. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592090541.	3.2	10
29	Late immune-related adverse events in long-term responders to PD-1/PD-L1 checkpoint inhibitors: A multicentre study. European Journal of Cancer, 2020, 134, 19-28.	2.8	45
30	DLC-1 down-regulation via exosomal miR-106b-3p exchange promotes CRC metastasis by the epithelial-to-mesenchymal transition. Clinical Science, 2020, 134, 955-959.	4.3	11
31	Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. Journal of Translational Medicine, 2019, 17, 230.	4.4	41
32	The Role of Cytotoxic Chemotherapy in Well-Differentiated Gastroenteropancreatic and Lung Neuroendocrine Tumors. Current Treatment Options in Oncology, 2019, 20, 72.	3.0	7
33	Revisiting the Role of Exosomes in Colorectal Cancer: Where Are We Now?. Frontiers in Oncology, 2019, 9, 521.	2.8	35
34	The mechanisms of acute interstitial nephritis in the era of immune checkpoint inhibitors in melanoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591987554.	3.2	21
35	The density and spatial tissue distribution of CD8+ and CD163+ immune cells predict response and outcome in melanoma patients receiving MAPK inhibitors. , 2019, 7, 308.		51
36	The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology, 2019, 109, 83-99.	2.5	87

#	Article	IF	CITATIONS
37	The metabolic milieu in melanoma: Role of immune suppression by CD73/adenosine. Tumor Biology, 2019, 41, 101042831983713.	1.8	29
38	Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Scientific Reports, 2019, 9, 17276.	3.3	16
39	Immune System Evasion as Hallmark of Melanoma Progression: The Role of Dendritic Cells. Frontiers in Oncology, 2019, 9, 1148.	2.8	90
40	Clinical practice: hepatitis C virus infection, cryoglobulinemia and cryoglobulinemic vasculitis. Clinical and Experimental Medicine, 2019, 19, 1-21.	3.6	39
41	Defective levels of both circulating dendritic cells and T-regulatory cells correlate with risk of recurrence in cutaneous melanoma. Clinical and Translational Oncology, 2019, 21, 845-854.	2.4	9
42	Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. Oncolmmunology, 2018, 7, e1387706.	4.6	76
43	SNPs in predicting clinical efficacy and toxicity of chemotherapy: walking through the quicksand. Oncotarget, 2018, 9, 25355-25382.	1.8	34
44	Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity. Oncotarget, 2018, 9, 20826-20837.	1.8	97
45	Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591879463.	3.2	317
46	Animal-type melanoma: dog or wolf? A review of the literature and a case report. Expert Reviews in Molecular Medicine, 2018, 20, e5.	3.9	2
47	Vitamin D in melanoma: Controversies and potential role in combination with immune check-point inhibitors. Cancer Treatment Reviews, 2018, 69, 21-28.	7.7	31
48	Everolimus restrains the IL-17A-dependent osteoclast-like transdifferentiation of dendritic cells in multiple myeloma. Experimental Hematology, 2017, 47, 48-53.	0.4	3
49	Immune system and melanoma biology: a balance between immunosurveillance and immune escape. Oncotarget, 2017, 8, 106132-106142.	1.8	174
50	Cilengitide restrains the osteoclastâ€ŀike bone resorbing activity of myeloma plasma cells. British Journal of Haematology, 2016, 173, 59-69.	2.5	10
51	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
52	Parallelism of DOG1 expression with recurrence risk in gastrointestinal stromal tumors bearing KIT or PDGFRA mutations. BMC Cancer, 2016, 16, 87.	2.6	20
53	miRNAs in melanoma: a defined role in tumor progression and metastasis. Expert Review of Clinical Immunology, 2016, 12, 79-89.	3.0	40
54	Everolimus restrains the paracrine pro-osteoclast activity of breast cancer cells. BMC Cancer, 2015, 15, 692.	2.6	16

#	Article	IF	CITATIONS
55	Dendritic cell-derived exosomes (Dex) are potential biomarkers of response to Ipilimumab in metastatic melanoma. Journal of Translational Medicine, 2015, 13, .	4.4	2
56	Paraneoplastic Focal Segmental Glomerulosclerosis in Sarcomatoid Renal Cell Cancer. Journal of Clinical Oncology, 2015, 33, e66-e70.	1.6	5
57	A Peculiar Molecular Profile of Umbilical Cord-Mesenchymal Stromal Cells Drives Their Inhibitory Effects on Multiple Myeloma Cell Growth and Tumor Progression. Stem Cells and Development, 2015, 24, 1457-1470.	2.1	21
58	Circulating dendritic cell levels identify high-risk stage II-III melanoma patients: a potential role as additional prognostic marker. Journal of Translational Medicine, 2015, 13, .	4.4	0
59	Cancer treatment-induced bone loss (CTIBL): Pathogenesis and clinical implications. Cancer Treatment Reviews, 2015, 41, 798-808.	7.7	85
60	Avβ3 integrin: Pathogenetic role in osteotropic tumors. Critical Reviews in Oncology/Hematology, 2015, 96, 183-193.	4.4	38
61	Natural History of Malignant Bone Disease in Hepatocellular Carcinoma: Final Results of a Multicenter Bone Metastasis Survey. PLoS ONE, 2014, 9, e105268.	2.5	33
62	The immune escape in melanoma: role of the impaired dendritic cell function. Expert Review of Clinical Immunology, 2014, 10, 1395-1404.	3.0	56
63	Does cilengitide deserve another chance?. Lancet Oncology, The, 2014, 15, e584-e585.	10.7	40
64	PTHrP Produced by Myeloma Plasma Cells Regulates Their Survival and Pro-Osteoclast Activity For Bone Disease Progression. Journal of Bone and Mineral Research, 2014, 29, 55-66.	2.8	53
65	An imbalance between Beclin-1 and p62 expression promotes the proliferation of myeloma cells through autophagy regulation. Experimental Hematology, 2014, 42, 897-908.e1.	0.4	13
66	Antiviral treatment in patients with indolent B-cell lymphomas associated with HCV infection: a study of the Fondazione Italiana Linfomi. Annals of Oncology, 2014, 25, 1404-1410.	1.2	133
67	Bone metastases in soft tissue sarcoma: a survey of natural history, prognostic value and treatment options. Clinical Sarcoma Research, 2013, 3, 6.	2.3	22
68	Immature dendritic cells in multiple myeloma are prone to osteoclastâ€like differentiation through interleukinâ€17 <scp>A</scp> stimulation. British Journal of Haematology, 2013, 161, 821-831.	2.5	42
69	Cytotherapies in multiple myeloma: a complementary approach to current treatments?. Expert Opinion on Biological Therapy, 2013, 13, S23-S34.	3.1	4
70	<i>In vitro</i> antiâ€myeloma activity of <scp>TRAIL</scp> â€expressing adiposeâ€derived mesenchymal stem cells. British Journal of Haematology, 2012, 157, 586-598.	2.5	46
71	Dendritic Cells and Malignant Plasma Cells: An Alliance in Multiple Myeloma Tumor Progression?. Oncologist, 2011, 16, 1040-1048.	3.7	38
72	Immature dendritic cells from patients with multiple myeloma are prone to osteoclast differentiation inÂvitro. Experimental Hematology, 2011, 39, 773-783.e1.	0.4	33

#	Article	IF	CITATIONS
73	Cytokine Overproduction, T-Cell Activation, and Defective T-Regulatory Functions Promote Nephritis in Systemic Lupus Erythematosus. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-6.	3.0	51
74	Boneâ€Resorbing Cells in Multiple Myeloma: Osteoclasts, Myeloma Cell Polykaryons, or Both?. Oncologist, 2009, 14, 264-275.	3.7	26
75	Oversecretion of Cytokines and Chemokines in Lupus Nephritis Is Regulated by Intraparenchymal Dendritic Cells. Annals of the New York Academy of Sciences, 2009, 1173, 449-457.	3.8	29
76	β3 Integrin Subunit Mediates the Bone-Resorbing Function Exerted by Cultured Myeloma Plasma Cells. Cancer Research, 2009, 69, 6738-6746.	0.9	32
77	Role of Active Drug Transporters in Refractory Multiple Myeloma. Current Topics in Medicinal Chemistry, 2009, 9, 218-224.	2.1	18
78	Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: Role of interleukinâ€18. Arthritis and Rheumatism, 2008, 58, 251-262.	6.7	207
79	Overexpression of interleukin-12 and T helper 1 predominance in lupus nephritis. Clinical and Experimental Immunology, 2008, 154, 247-254.	2.6	97
80	Increased IL-18 Production by Dendritic Cells in Active Inflammatory Myopathies. Annals of the New York Academy of Sciences, 2007, 1107, 184-192.	3.8	26
81	AlphaVBeta3 (αvβ3) Integrin Drives the Osteoclastogenesis through a Osteoclast-Like Functional Differentiation of Myeloma Cells Blood, 2007, 110, 814-814.	1.4	1
82	Deregulated expression of monocyte chemoattractant protein-1 (MCP-1) in arterial hypertension: role in endothelial inflammation and atheromasia. Journal of Hypertension, 2006, 24, 1307-1318.	0.5	41
83	Interleukin-18 overexpression as a hallmark of the activity of autoimmune inflammatory myopathies. Clinical and Experimental Immunology, 2006, 146, 21-31.	2.6	59
84	Urinary biomarkers in lupus nephritis. Autoimmunity Reviews, 2006, 5, 383-388.	5.8	90
85	The Interplay of Chemokines and Dendritic Cells in the Pathogenesis of Lupus Nephritis. Annals of the New York Academy of Sciences, 2005, 1051, 421-432.	3.8	43
86	Th1 cytokines in the pathogenesis of lupus nephritis: The role of IL-18. Autoimmunity Reviews, 2005, 4, 542-548.	5.8	66
87	Induction of Apoptosis by the Hydrocarbon Oil Pristane: Implications for Pristane-Induced Lupus. Journal of Immunology, 2005, 175, 4777-4782.	0.8	67
88	Sjögren's syndrome: an autoimmune disorder with otolaryngological involvement. Acta Otorhinolaryngologica Italica, 2005, 25, 139-44.	1.5	19
89	Primary intimal sarcoma of the thoracic aorta. Journal of Experimental and Clinical Cancer Research, 2005, 24, 139-42.	0.4	2
90	Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis. Clinical and Experimental Immunology, 2004, 138, 171-178.	2.6	110

#	Article	IF	CITATIONS
91	Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. Arthritis and Rheumatism, 2004, 50, 1842-1849.	6.7	120
92	Recent Advances in Understanding the Pathogenesis of Anemia in Multiple Myeloma. International Journal of Hematology, 2003, 78, 121-125.	1.6	21
93	Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. British Journal of Haematology, 2003, 122, 39-52.	2.5	65
94	Enhancement of T cell apoptosis correlates with increased serum levels of soluble Fas (CD95/Apo-I) in active lupus. Lupus, 2003, 12, 8-14.	1.6	31
95	Anemia in Multiple Myeloma: Role of Deregulated Plasma Cell Apoptosis. Leukemia and Lymphoma, 2002, 43, 1527-1533.	1.3	10
96	Negative regulation of erythroblast maturation by Fas-L+/TRAIL+ highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma. Blood, 2002, 99, 1305-1313.	1.4	97
97	Serum elevations of soluble Fas (CD95/apo-I) concur in deregulating T cell apoptosis during active lupus disease. Clinical and Experimental Medicine, 2002, 2, 13-27.	3.6	9
98	Fas-L up-regulation by highly malignant myeloma plasma cells: role in the pathogenesis of anemia and disease progression. Blood, 2001, 97, 1155-1164.	1.4	51
99	VEINCTR-N, an Immunogenic Epitope of Fas (CD95/Apo-I), and Soluble Fas Enhance T-cell Apoptosis in vitro. II. Functional Analysis and Possible Implications in HIV-1 Disease. Molecular Medicine, 2000, 6, 509-526.	4.4	8
100	Nef protein induces differential effects in CD8+cells from HIV-1-infected patients. European Journal of Clinical Investigation, 1999, 29, 980-991.	3.4	5
101	Functional Fas-ligand expression on T cells from HIV-1-infected patients is unrelated to CD4+ lymphopenia. International Journal of Clinical and Laboratory Research, 1998, 28, 215-225.	1.0	11
102	Antiphosphatidylserine antibodies in human immunodeficiency virus-1 patients with evidence of T-cell apoptosis and mediate antibody- dependent cellular cytotoxicity [see comments]. Blood, 1996, 87, 5185-5195.	1.4	46
103	Overexpression of Fas antigen on T cells in advanced HIV-1 infection: differential ligation constantly induces apoptosis. Aids, 1996, 10, 131-141.	2.2	94
104	Immunomodulation of T and B cell functions in multiple myeloma patients treated with combined erythropoietin and α-interferon therapy. International Journal of Clinical and Laboratory Research, 1995, 25, 79-83.	1.0	9