
## Mahsa Dadar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100087/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Network structure of brain atrophy in de novo Parkinson's disease. ELife, 2015, 4, .                                                                                                                                                           | 2.8 | 187       |
| 2  | Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 2556-2568.                                                   | 5.4 | 165       |
| 3  | Structural neuroimaging as clinical predictor: A review of machine learning applications.<br>NeuroImage: Clinical, 2018, 20, 506-522.                                                                                                          | 1.4 | 131       |
| 4  | A comparison of publicly available linear MRI stereotaxic registration techniques. NeuroImage, 2018,<br>174, 191-200.                                                                                                                          | 2.1 | 120       |
| 5  | Neuroanatomical differences in obesity: meta-analytic findings and their validation in an independent<br>dataset. International Journal of Obesity, 2019, 43, 943-951.                                                                         | 1.6 | 116       |
| 6  | Neurobehavioral correlates of obesity are largely heritable. Proceedings of the National Academy of<br>Sciences of the United States of America, 2018, 115, 9312-9317.                                                                         | 3.3 | 105       |
| 7  | Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in<br>Parkinson's Disease. Scientific Reports, 2016, 6, 26782.                                                                                         | 1.6 | 101       |
| 8  | Validation of a Regression Technique for Segmentation of White Matter Hyperintensities in<br>Alzheimer's Disease. IEEE Transactions on Medical Imaging, 2017, 36, 1758-1768.                                                                   | 5.4 | 85        |
| 9  | Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging. NeuroImage, 2017, 157, 233-249.                                                                                         | 2.1 | 79        |
| 10 | A clinical-anatomical signature of Parkinson's disease identified with partial least squares and magnetic resonance imaging. NeuroImage, 2019, 190, 69-78.                                                                                     | 2.1 | 66        |
| 11 | Validation of <scp>T</scp> 1wâ€based segmentations of white matter hyperintensity volumes in<br>largeâ€scale datasets of aging. Human Brain Mapping, 2018, 39, 1093-1107.                                                                      | 1.9 | 65        |
| 12 | Association Between Midlife Obesity and Its Metabolic Consequences, Cerebrovascular Disease, and<br>Cognitive Decline. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4260-e4274.                                               | 1.8 | 63        |
| 13 | Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study.<br>Brain, 2020, 143, 3052-3066.                                                                                                                | 3.7 | 54        |
| 14 | White matter hyperintensities are linked to future cognitive decline in de novo Parkinson's disease<br>patients. Neurolmage: Clinical, 2018, 20, 892-900.                                                                                      | 1.4 | 53        |
| 15 | White matter in different regions evolves differently during progression to dementia. Neurobiology of Aging, 2019, 76, 71-79.                                                                                                                  | 1.5 | 49        |
| 16 | Deformation based morphometry study of longitudinal MRI changes in behavioral variant<br>frontotemporal dementia. NeuroImage: Clinical, 2019, 24, 102079.                                                                                      | 1.4 | 44        |
| 17 | CerebrA, registration and manual label correction of Mindboggle-101 atlas for MNI-ICBM152 template.<br>Scientific Data, 2020, 7, 237.                                                                                                          | 2.4 | 43        |
| 18 | Subjective Cognitive Decline Is Associated With Altered Default Mode Network Connectivity in<br>Individuals With a Family History of Alzheimer's Disease. Biological Psychiatry: Cognitive<br>Neuroscience and Neuroimaging, 2018, 3, 463-472. | 1.1 | 41        |

Mahsa Dadar

| #  | Article                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | HIV infection and cerebral small vessel disease are independently associated with brain atrophy and cognitive impairment. Aids, 2019, 33, 1197-1205.                                                                                                                                                                                | 1.0 | 41        |
| 20 | The relationship between brain atrophy and cognitive-behavioural symptoms in retired Canadian football players with multiple concussions. NeuroImage: Clinical, 2018, 19, 551-558.                                                                                                                                                  | 1.4 | 37        |
| 21 | Cognitive and motor correlates of grey and white matter pathology in Parkinson's disease.<br>NeuroImage: Clinical, 2020, 27, 102353.                                                                                                                                                                                                | 1.4 | 36        |
| 22 | Comparison of Multiple Sclerosis Cortical Lesion Types Detected by Multicontrast 3T and 7T MRI.<br>American Journal of Neuroradiology, 2019, 40, 1162-1169.                                                                                                                                                                         | 1.2 | 34        |
| 23 | White Matter Hyperintensities Mediate Impact of Dysautonomia on Cognition in Parkinson's Disease.<br>Movement Disorders Clinical Practice, 2020, 7, 639-647.                                                                                                                                                                        | 0.8 | 32        |
| 24 | Amyloid and Tau Pathology Associations With Personality Traits, Neuropsychiatric Symptoms, and<br>Cognitive Lifestyle in the Preclinical Phases of Sporadic and Autosomal Dominant Alzheimer's Disease.<br>Biological Psychiatry, 2021, 89, 776-785.                                                                                | 0.7 | 30        |
| 25 | Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia.<br>Brain, 2023, 146, 321-336.                                                                                                                                                                                                          | 3.7 | 30        |
| 26 | White matter hyperintensities and neuropsychiatric symptoms in mild cognitive impairment and Alzheimer's disease. NeuroImage: Clinical, 2020, 28, 102367.                                                                                                                                                                           | 1.4 | 28        |
| 27 | Assessment of a prognostic MRI biomarker in early de novo Parkinson's disease. NeuroImage: Clinical, 2019, 24, 101986.                                                                                                                                                                                                              | 1.4 | 26        |
| 28 | The temporal relationships between white matter hyperintensities, neurodegeneration, amyloid beta,<br>and cognition. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12,<br>e12091.                                                                                                                   | 1.2 | 26        |
| 29 | Beware of white matter hyperintensities causing systematic errors in <scp>FreeSurfer</scp> gray matter segmentations!. Human Brain Mapping, 2021, 42, 2734-2745.                                                                                                                                                                    | 1.9 | 26        |
| 30 | Cerebral atrophy in amyotrophic lateral sclerosis parallels the pathological distribution of TDP43.<br>Brain Communications, 2020, 2, fcaa061.                                                                                                                                                                                      | 1.5 | 22        |
| 31 | The Longitudinal Assessment of Neuropsychiatric Symptoms in Mild Cognitive Impairment and<br>Alzheimer's Disease and Their Association With White Matter Hyperintensities in the National<br>Alzheimer's Coordinating Center's Uniform Data Set. Biological Psychiatry: Cognitive Neuroscience<br>and Neuroimaging, 2021, 6, 70-78. | 1.1 | 22        |
| 32 | White matter hyperintensities are associated with grey matter atrophy and cognitive decline in Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2022, 111, 54-63.                                                                                                                                            | 1.5 | 22        |
| 33 | Neuroanatomical changes in white and grey matter after sleeve gastrectomy. NeuroImage, 2020, 213, 116696.                                                                                                                                                                                                                           | 2.1 | 19        |
| 34 | Reliability assessment of tissue classification algorithms for multi-center and multi-scanner data.<br>NeuroImage, 2020, 217, 116928.                                                                                                                                                                                               | 2.1 | 16        |
| 35 | Spontaneous neural activity changes after bariatric surgery: A resting-state fMRI study. NeuroImage, 2021, 241, 118419.                                                                                                                                                                                                             | 2.1 | 16        |
| 36 | Regional brain atrophy and cognitive decline depend on definition of subjective cognitive decline.<br>NeuroImage: Clinical, 2022, 33, 102923.                                                                                                                                                                                       | 1.4 | 16        |

Mahsa Dadar

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | BISON: Brain tissue segmentation pipeline using T <sub>1</sub> â€weighted magnetic resonance images<br>and a random forest classifier. Magnetic Resonance in Medicine, 2021, 85, 1881-1894. | 1.9 | 15        |
| 38 | Impact of weight loss on brain age: Improved brain health following bariatric surgery. NeuroImage, 2022, 259, 119415.                                                                       | 2.1 | 13        |
| 39 | White matter lesions may be an early marker for age-related cognitive decline. NeuroImage: Clinical, 2022, 35, 103096.                                                                      | 1.4 | 13        |
| 40 | Conversion of diffusely abnormal white matter to focal lesions is linked to progression in secondary progressive multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 208-219.         | 1.4 | 12        |
| 41 | White matter hyperintensities mediate the impact of amyloid ß on future freezing of gait in<br>Parkinson's disease. Parkinsonism and Related Disorders, 2021, 85, 95-101.                   | 1.1 | 12        |
| 42 | Relationship between impulsivity, uncontrolled eating and body mass index: a hierarchical model.<br>International Journal of Obesity, 2022, 46, 129-136.                                    | 1.6 | 12        |
| 43 | Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis. NeuroImage, 2020, 213, 116690.                                        | 2.1 | 11        |
| 44 | MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. Journal<br>of Neurology, Neurosurgery and Psychiatry, 2021, 92, 608-616.                        | 0.9 | 10        |
| 45 | A ketogenic intervention improves dorsal attention network functional and structural connectivity in mild cognitive impairment. Neurobiology of Aging, 2022, 115, 77-87.                    | 1.5 | 10        |
| 46 | Ventricular features as reliable differentiators between bvFTD and other dementias. NeuroImage:<br>Clinical, 2022, 33, 102947.                                                              | 1.4 | 9         |
| 47 | A novel ex vivo, in situ method to study the human brain through MRI and histology. Journal of<br>Neuroscience Methods, 2020, 345, 108903.                                                  | 1.3 | 7         |
| 48 | Association between Visceral Adiposity Index, Binge Eating Behavior, and Grey Matter Density in Caudal<br>Anterior Cingulate Cortex in Severe Obesity. Brain Sciences, 2021, 11, 1158.      | 1,1 | 7         |
| 49 | Birth Cohorts and Cognitive Reserve Influence Cognitive Performances in Older Adults. Journal of Alzheimer's Disease, 2021, , 1-18.                                                         | 1.2 | 7         |
| 50 | DARQ: Deep learning of quality control for stereotaxic registration of human brain MRI to the T1w<br>MNI-ICBM 152 template. NeuroImage, 2022, 257, 119266.                                  | 2.1 | 7         |
| 51 | MNI-FTD templates, unbiased average templates of frontotemporal dementia variants. Scientific Data,<br>2021, 8, 222.                                                                        | 2.4 | 5         |
| 52 | Diffusely abnormal white matter converts to T2 lesion volume in the absence of MRI-detectable acute inflammation. Brain, 2022, 145, 2008-2017.                                              | 3.7 | 5         |
| 53 | Multi sequence average templates for aging and neurodegenerative disease populations. Scientific<br>Data, 2022, 9, .                                                                        | 2.4 | 5         |
| 54 | Alterations in Brain Network Organization in Adults With Obesity as Compared With Healthy-Weight<br>Individuals and Seniors. Psychosomatic Medicine, 2021, 83, 700-706.                     | 1.3 | 4         |

MAHSA DADAR

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | IC-P-154: Association between apolipoprotein a-i levels and white matter hyperintensities depends on<br>CSF tau levels in a high-risk cohort of aging cognitively normal persons: The prevent-alzheimer's<br>disease study. , 2015, 11, P103-P103. |     | 2         |
| 56 | Automatic Prediction of Cognitive and Functional Decline Can Significantly Decrease the Number of<br>Subjects Required for Clinical Trials in Early Alzheimer's Disease. Journal of Alzheimer's Disease, 2021,<br>84, 1-8.                         | 1.2 | 2         |
| 57 | IC-P-138: Spatial distribution of white matter hyperintensities in elderly individuals. , 2015, 11, P93-P94.                                                                                                                                       |     | 1         |
| 58 | Subtyping mild cognitive impairment based on imaging and CSF biomarker levels. Alzheimer's and Dementia, 2021, 17, .                                                                                                                               | 0.4 | 1         |
| 59 | P3-133: Association between apolipoprotein a-i levels and white matter hyperintensities depends on CSF<br>tau levels in a high-risk cohort of aging cognitively normal persons: The prevent-alzheimer's disease<br>study. , 2015, 11, P674-P675.   |     | 0         |
| 60 | P1-147: Spatial distribution of white matter hyperintensities in elderly individuals. , 2015, 11, P399-P400.                                                                                                                                       |     | 0         |
| 61 | P1-146: Accurate automatic segmentation of white matter hyperintensities using a linear regression classifier. , 2015, 11, P398-P399.                                                                                                              |     | 0         |
| 62 | IC-P-139: Accurate automatic segmentation of white matter hyperintensities using a linear regression classifier. , 2015, 11, P94-P95.                                                                                                              |     | 0         |
| 63 | Reply To: Cerebral Vasomotor Reactivity in Parkinson's Disease: A Missing Link between Dysautonomia,<br>White Matter Lesions, and Cognitive Decline?. Movement Disorders Clinical Practice, 2020, 7, 996-998.                                      | 0.8 | 0         |
| 64 | Reliability assessment of tissue classification algorithms for multiâ€center and multiâ€scanner data.<br>Alzheimer's and Dementia, 2020, 16, e041150.                                                                                              | 0.4 | 0         |
| 65 | White matter hyperintensities, gray matter atrophy and cognitive deficits in Parkinson's disease.<br>Alzheimer's and Dementia, 2020, 16, e041161.                                                                                                  | 0.4 | 0         |
| 66 | Gray and white matter damage are associated with motor symptoms in Parkinson's disease. Alzheimer's<br>and Dementia, 2020, 16, e041174.                                                                                                            | 0.4 | 0         |