
## Zachary A Steelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100063/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging.<br>Analytical Chemistry, 2015, 87, 7519-7523.                                                                                 | 6.5 | 106       |
| 2  | Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness. Biophysical Journal, 2017, 112, 692-702.                                                                                         | 0.5 | 57        |
| 3  | Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies. Journal of Biophotonics, 2017, 10, 1714-1722.                                | 2.3 | 52        |
| 4  | Light-scattering methods for tissue diagnosis. Optica, 2019, 6, 479.                                                                                                                                                    | 9.3 | 41        |
| 5  | Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis. Journal of Biophotonics, 2015, 8, 408-414.                                                             | 2.3 | 37        |
| 6  | Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity. Biochemical and Biophysical Research Communications, 2016, 478, 1261-1267.                                   | 2.1 | 32        |
| 7  | Shear Modulus Measurement by Quantitative Phase Imaging and Correlation with Atomic Force Microscopy. Biophysical Journal, 2019, 117, 696-705.                                                                          | 0.5 | 22        |
| 8  | nsPEF-induced PIP2 depletion, PLC activity and actin cytoskeletal cortex remodeling are responsible<br>for post-exposure cellular swelling and blebbing. Biochemistry and Biophysics Reports, 2017, 9, 36-41.           | 1.3 | 20        |
| 9  | Revealing the glass transition in shape memory polymers using Brillouin spectroscopy. Applied Physics<br>Letters, 2017, 111, 241904.                                                                                    | 3.3 | 17        |
| 10 | Multimodal Coherent Imaging of Retinal Biomarkers of Alzheimer's Disease in a Mouse Model.<br>Scientific Reports, 2020, 10, 7912.                                                                                       | 3.3 | 16        |
| 11 | Response to Comment on "Is the nuclear refractive index lower than cytoplasm? Validation of phase<br>measurements and implications for light scattering technologies― Journal of Biophotonics, 2018, 11,<br>e201800091. | 2.3 | 12        |
| 12 | Comparison of imaging fiber bundles for coherence-domain imaging. Applied Optics, 2018, 57, 1455.                                                                                                                       | 1.8 | 12        |
| 13 | Scanning system for angle-resolved low-coherence interferometry. Optics Letters, 2017, 42, 4581.                                                                                                                        | 3.3 | 10        |
| 14 | Angular range, sampling and noise considerations for inverse light scattering analysis of nuclear morphology. Journal of Biophotonics, 2019, 12, e201800258.                                                            | 2.3 | 8         |
| 15 | Visualizing bleb mass dynamics in single cells using quantitative phase microscopy. Applied Optics, 2021, 60, G10.                                                                                                      | 1.8 | 7         |
| 16 | Deep imaging with 1.3â€Âµm dual-axis optical coherence tomography and an enhanced depth of focus.<br>Biomedical Optics Express, 2021, 12, 7689.                                                                         | 2.9 | 6         |
| 17 | Optical coherence tomography through a rigid borescope applied to quantification of articular cartilage thickness in a porcine knee model. Optics Letters, 2019, 44, 5590.                                              | 3.3 | 5         |
| 18 | Optical coherence tomography of small intestine allograft biopsies using a handheld surgical probe.<br>Journal of Biomedical Optics, 2021, 26, .                                                                        | 2.6 | 4         |

ZACHARY A STEELMAN

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Spatial scanning of a sample with two-dimensional angle-resolved low-coherence interferometry for analysis of anisotropic scatterers. Biomedical Optics Express, 2020, 11, 4419. | 2.9 | 3         |
| 20 | Quantitative phase microscopy monitors subcellular dynamics in single cells exposed to nanosecond pulsed electric fields. Journal of Biophotonics, 2021, 14, e202100125.         | 2.3 | 2         |
| 21 | Reconstruction of angle-resolved backscattering through a multimode fiber for cell nuclei and particle size determination. APL Photonics, 2020, 5, 076105.                       | 5.7 | 1         |
| 22 | Esophageal OCT Imaging Using a Paddle Probe Externally Attached to Endoscope. Digestive Diseases and Sciences, 2022, 67, 4805-4812.                                              | 2.3 | 1         |
| 23 | Determination of Particle Size from Reconstructed Angular Backscattering Through a Single<br>Multimode Fiber. , 2020, , .                                                        |     | 0         |