Yusaku Uga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9099453/publications.pdf Version: 2024-02-01

Υμελκή Πολ

#	Article	IF	CITATIONS
1	Improving the efficiency of plant root system phenotyping through digitization and automation. Breeding Science, 2022, 72, 48-55.	0.9	6
2	Quantification of Soil-surface Roots in Seedlings and Mature Rice Plants. Bio-protocol, 2022, 12, .	0.2	1
3	Identification of a unique allele in the quantitative trait locus for crown root number in <i>japonica</i> rice from Japan using genome-wide association studies. Breeding Science, 2022, 72, 222-231.	0.9	4
4	The transcriptomic landscapes of rice cultivars with diverse root system architectures grown in upland field conditions. Plant Journal, 2021, 106, 1177-1190.	2.8	17
5	Synergy between a shallow root system with a DRO1 homologue and localized P application improves P uptake of lowland rice. Scientific Reports, 2021, 11, 9484.	1.6	17
6	iPOTs: Internet of Thingsâ€based pot system controlling optional treatment of soil water condition for plant phenotyping under drought stress. Plant Journal, 2021, 107, 1569-1580.	2.8	10
7	RSAtrace3D: robust vectorization software for measuring monocot root system architecture. BMC Plant Biology, 2021, 21, 398.	1.6	11
8	Challenges to design-oriented breeding of root system architecture adapted to climate change. Breeding Science, 2021, 71, 3-12.	0.9	37
9	Rice functional genomics: theories and practical applications. Molecular Breeding, 2020, 40, 1.	1.0	Ο
10	Root angle modifications by the <i>DRO1</i> homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21242-21250.	3.3	134
11	High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. Plant Methods, 2020, 16, 66.	1.9	71
12	The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. Journal of Experimental Botany, 2020, 71, 4452-4468.	2.4	119
13	<i>De novo</i> Genome Assembly of the <i>indica</i> Rice Variety IR64 Using Linked-Read Sequencing and Nanopore Sequencing. G3: Genes, Genomes, Genetics, 2020, 10, 1495-1501.	0.8	22
14	A Deep Learning-Based Phenotypic Analysis of Rice Root Distribution from Field Images. Plant Phenomics, 2020, 2020, 3194308.	2.5	24
15	Backhoe-assisted monolith method for plant root phenotyping under upland conditions. Breeding Science, 2019, 69, 508-513.	0.9	18
16	Towards a deeper integrated multi-omics approach in the root system to develop climate-resilient rice. Molecular Breeding, 2019, 39, 1.	1.0	15
17	Genetic Mechanisms Involved in the Formation of Root System Architecture. , 2018, , 241-274.		14
18	Fine Mapping of <i>QUICK ROOTING 1</i> and <i>2</i> , Quantitative Trait Loci Increasing Root Length in Rice. G3: Genes, Genomes, Genetics, 2018, 8, 727-735.	0.8	25

Yusaku Uga

#	Article	IF	CITATIONS
19	Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis. BMC Genomics, 2018, 19, 273.	1.2	12
20	Near-isogenic lines of IR64 (Oryza sativa subsp. indica cv.) introgressed with DEEPER ROOTING 1 and STELE TRANSVERSAL AREA 1 improve rice yield formation over the background parent across three water management regimes. Plant Production Science, 2017, 20, 249-261.	0.9	6
21	Association between root growth angle and root length density of a near-isogenic line of IR64 rice with <i>DEEPER ROOTING 1</i> under different levels of soil compaction. Plant Production Science, 2017, 20, 162-175.	0.9	26
22	Genetic variation of root angle distribution in rice (<i>Oryza sativa</i> L.) seedlings. Breeding Science, 2017, 67, 181-190.	0.9	13
23	Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency. Frontiers in Chemistry, 2017, 5, 106.	1.8	158
24	A novel <i>Tos17</i> insertion upstream of <i>Hd1</i> alters flowering time in rice. Plant Breeding, 2016, 135, 588-592.	1.0	4
25	Genomic Prediction of Biological Shape: Elliptic Fourier Analysis and Kernel Partial Least Squares (PLS) Regression Applied to Grain Shape Prediction in Rice (Oryza sativa L.). PLoS ONE, 2015, 10, e0120610.	1.1	43
26	Genetic improvement for root growth angle to enhance crop production. Breeding Science, 2015, 65, 111-119.	0.9	103
27	A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice, 2015, 8, 8.	1.7	65
28	QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice, 2015, 8, 16.	1.7	69
29	The roots of future rice harvests. Rice, 2014, 7, 29.	1.7	57
30	Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Scientific Reports, 2014, 4, 5563.	1.6	121
31	Genomics-Assisted Allele Mining and its Integration Into Rice Breeding. , 2014, , 251-265.		8
32	Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45, 1097-1102.	9.4	1,134
33	Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.). Rice, 2013, 6, 30.	1.7	24
34	A major QTL controlling deep rooting on rice chromosome 4. Scientific Reports, 2013, 3, 3040.	1.6	58
35	Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields. Theoretical and Applied Genetics, 2012, 124, 75-86.	1.8	62
36	Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 2011, 62, 2485-2494.	2.4	280

Yusaku Uga

#	Article	IF	CITATIONS
37	Characterization of Introgression Lines for Yield-related Traits with Indica-type Rice Variety IR64 Genetic Background. Japan Agricultural Research Quarterly, 2010, 44, 277-290.	0.1	18
38	Genome-wide association study of grain shape variation among Oryza sativa L. germplasms based on elliptic Fourier analysis. Molecular Breeding, 2010, 25, 203-215.	1.0	54
39	Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. Molecular Breeding, 2010, 26, 533-538.	1.0	31
40	Q-TARO: QTL Annotation Rice Online Database. Rice, 2010, 3, 194-203.	1.7	176
41	Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breeding Science, 2009, 59, 87-93.	0.9	75
42	Development of introgression lines of an Indica-type rice variety, IR64, for unique agronomic traits and detection of the responsible chromosomal regions. Field Crops Research, 2009, 114, 244-254.	2.3	49
43	QTLs underlying natural variation in stele and xylem structures of rice root. Breeding Science, 2008, 58, 7-14.	0.9	68
44	Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L. germplasms. Theoretical and Applied Genetics, 2007, 114, 1437-1449.	1.8	47