
Zhaoyong Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/909933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn ₂ S ₄ for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 207-217.	5.2	131
2	Photothermal conversion assisted photocatalytic hydrogen evolution from amorphous carbon nitrogen nanosheets with nitrogen vacancies. Physical Chemistry Chemical Physics, 2020, 22, 4453-4463.	1.3	21
3	Cross-linked bond accelerated interfacial charge transfer in monolayer zinc indium sulfide (ZnIn2S4)/reduced graphene oxide (RGO) heterostructure for photocatalytic hydrogen production with mechanistic insight. Catalysis Science and Technology, 2019, 9, 4066-4076.	2.1	26
4	CdS Nanorod-Amorphous Molybdenum Oxide Nanocomposite for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 6783-6792.	2.4	24
5	Amorphous Fe ₂ O ₃ for photocatalytic hydrogen evolution. Catalysis Science and Technology, 2019, 9, 5582-5592.	2.1	40
6	Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. Journal of Catalysis, 2019, 372, 299-310.	3.1	66
7	Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 248, 193-201.	10.8	369
8	Hydrogen-interstitial CuWO4 nanomesh: A single-component full spectrum-active photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2018, 227, 35-43.	10.8	41
9	Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nature Communications, 2018, 9, 4036.	5.8	174
10	Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters. Physical Chemistry Chemical Physics, 2017, 19, 8356-8362.	1.3	25
11	Modifying photocatalysts for solar hydrogen evolution based on the electron behavior. Journal of Materials Chemistry A, 2017, 5, 5235-5259.	5.2	36
12	Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. Journal of Materials Chemistry A, 2017, 5, 773-781.	5.2	68
13	A 2D self-assembled MoS ₂ /ZnIn ₂ S ₄ heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale, 2017, 9, 18290-18298.	2.8	121
14	Nanodiamondâ€Embedded pâ€Type Copper(I) Oxide Nanocrystals for Broadâ€Spectrum Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501865.	10.2	81
15	A Floating Sheet for Efficient Photocatalytic Water Splitting. Advanced Energy Materials, 2016, 6, 1600510.	10.2	74
16	Amorphous transitional metal borides as substitutes for Pt cocatalysts for photocatalytic water splitting. Nano Energy, 2016, 27, 103-113.	8.2	142
17	Nanodiamonds: Nanodiamond-Embedded p-Type Copper(I) Oxide Nanocrystals for Broad-Spectrum Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	10.2	0
18	Self-assembling solid-state hydrogen source for drylands photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 15920-15928.	5.2	12

ZHAOYONG LIN

#	Article	IF	CITATIONS
19	Midrefractive Dielectric Modulator for Broadband Unidirectional Scattering and Effective Radiative Tailoring in the Visible Region. ACS Applied Materials & Interfaces, 2016, 8, 22468-22476.	4.0	26
20	Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level. Nanoscale, 2016, 8, 15001-15007.	2.8	18
21	Reduced TiO ₂ -Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts. ACS Applied Materials & Interfaces, 2016, 8, 8536-8545.	4.0	140
22	Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale, 2016, 8, 8826-8838.	2.8	69
23	New type high-index dielectric nanosensors based on the scattering intensity shift. Nanoscale, 2016, 8, 5996-6007.	2.8	50
24	Matching energy levels between TiO ₂ and α-Fe ₂ O ₃ in a core–shell nanoparticle for visible-light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 14853-14863.	5.2	57
25	Electronic Reconstruction of α-Ag ₂ WO ₄ Nanorods for Visible-Light Photocatalysis. ACS Nano, 2015, 9, 7256-7265.	7.3	131
26	Directional Fano Resonance in a Silicon Nanosphere Dimer. ACS Nano, 2015, 9, 2968-2980.	7.3	198
27	Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes. Journal of Materials Chemistry A, 2015, 3, 7649-7658.	5.2	88
28	Fabrication of Si/Au Core/Shell Nanoplasmonic Structures with Ultrasensitive Surface-Enhanced Raman Scattering for Monolayer Molecule Detection. Journal of Physical Chemistry C, 2015, 119, 1234-1246.	1.5	58
29	A design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication. Journal of Applied Physics, 2014, 116, .	1.1	13
30	Gold nanoarray deposited using alternating current for emission rate-manipulating nanoantenna. Nanoscale Research Letters, 2013, 8, 295.	3.1	5
31	A numerical study of UTC-PD structures with berylium as the p-dopant. , 2013, , .		0