
Richard C Hamelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9099241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	3.3	4,012
2	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	3.3	640
3	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	2.1	595
4	Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau061-bau061.	1.4	272
5	The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLoS Genetics, 2012, 8, e1003088.	1.5	226
6	Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont <i>Grosmannia clavigera</i> , a lodgepole pine pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2504-2509.	3.3	218
7	A Comprehensive Analysis of Genes Encoding Small Secreted Proteins Identifies Candidate Effectors in <i>Melampsora larici-populina</i> (Poplar Leaf Rust). Molecular Plant-Microbe Interactions, 2012, 25, 279-293.	1.4	150
8	De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biology, 2009, 10, R94.	13.9	130
9	Association genetics, geography and ecophysiology link stomatal patterning in <i><scp>P</scp>opulus trichocarpa</i> with carbon gain and disease resistance tradeâ€offs. Molecular Ecology, 2014, 23, 5771-5790.	2.0	103
10	Standardizing the Nomenclature for Clonal Lineages of the Sudden Oak Death Pathogen, <i>Phytophthora ramorum</i> . Phytopathology, 2009, 99, 792-795.	1.1	93
11	Evaluation of mitochondrial genes as DNA barcode for Basidiomycota. Molecular Ecology Resources, 2009, 9, 99-113.	2.2	91
12	Molecular Detection of Phytophthora ramorum by Real-Time Polymerase Chain Reaction Using TaqMan, SYBR Green, and Molecular Beacons. Phytopathology, 2007, 97, 632-642.	1.1	89
13	Development of a multiplex immunocapture RT-PCR assay for detection and differentiation of tomato and tobacco mosaic tobamoviruses. Journal of Virological Methods, 1998, 74, 167-178.	1.0	86
14	Genetic Resistance to Fusiform Rust in Southern Pines and White Pine Blister Rust in White Pines—A Contrasting Tale of Two Rust Pathosystems—Current Status and Future Prospects. Forests, 2014, 5, 2050-2083.	0.9	81
15	Molecular Profiling of Rhizosphere Microbial Communities Associated with Healthy and Diseased Black Spruce (Picea mariana) Seedlings Grown in a Nursery. Applied and Environmental Microbiology, 2004, 70, 3541-3551.	1.4	77
16	Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics, 2016, 12, e1005876.	1.5	77
17	Identification of <i>Gremmeniella abietina</i> Races with Random Amplified Polymorphic DNA Markers. Applied and Environmental Microbiology, 1993, 59, 1752-1755.	1.4	75
18	The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola. BMC Genomics, 2014, 15, 1132.	1.2	65

#	Article	IF	CITATIONS
19	Ecology and Evolution of the Sudden Oak Death Pathogen <i>Phytophthora ramorum</i> . Annual Review of Phytopathology, 2019, 57, 301-321.	3.5	64
20	Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3451-3456.	3.3	63
21	Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evolutionary Applications, 2020, 13, 95-115.	1.5	61
22	Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics, 2010, 11, 422.	1.2	59
23	Genetic differentiation within the European race of Gremmeniella abietina. Mycological Research, 1996, 100, 49-56.	2.5	57
24	Spatial Genetic Structure of a Symbiotic Beetle-Fungal System: Toward Multi-Taxa Integrated Landscape Genetics. PLoS ONE, 2011, 6, e25359.	1.1	57
25	Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen <i>Grosmannia clavigera</i> . Molecular Ecology, 2011, 20, 2581-2602.	2.0	57
26	Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences. Mycologia, 2001, 93, 915-933.	0.8	55
27	Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus. Scientific Reports, 2017, 7, 1831.	1.6	54
28	Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Molecular Ecology, 2017, 26, 2077-2091.	2.0	52
29	Molecular Detection of 10 of the Most Unwanted Alien Forest Pathogens in Canada Using Real-Time PCR. PLoS ONE, 2015, 10, e0134265.	1.1	51
30	Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen <i>Phytophthora ramorum</i> . MBio, 2019, 10, .	1.8	50
31	PCR detection of Gremmeniella abietina, the causal agent of Scleroderris canker of pine. Mycological Research, 2000, 104, 527-532.	2.5	49
32	Unequal Recombination and Evolution of the Mating-Type (MAT) Loci in the Pathogenic Fungus Grosmannia clavigera and Relatives. G3: Genes, Genomes, Genetics, 2013, 3, 465-480.	0.8	49
33	Fungal pathogen (mis-) identifications: A case study with DNA barcodes on MelampsoraÂrusts of aspen and white poplar. Mycological Research, 2009, 113, 713-724.	2.5	48
34	Phylogenetic species recognition reveals host-specific lineages among poplar rust fungi. Molecular Phylogenetics and Evolution, 2013, 66, 628-644.	1.2	48
35	Asexual Propagation of a Virulent Clone Complex in a Human and Feline Outbreak of Sporotrichosis. Eukaryotic Cell, 2015, 14, 158-169.	3.4	47
36	Population structure and migration pattern of a conifer pathogen, <i>Grosmannia clavigera</i> , as influenced by its symbiont, the mountain pine beetle. Molecular Ecology, 2012, 21, 71-86.	2.0	46

#	Article	IF	CITATIONS
37	Genetic diversity amongFusarium graminearumstrains from Ontario and Quebec. Canadian Journal of Plant Pathology, 1999, 21, 308-314.	0.8	44
38	DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia, 2011, 103, 1250-1266.	0.8	44
39	Duplications and losses in gene families of rust pathogens highlight putative effectors. Frontiers in Plant Science, 2014, 5, 299.	1.7	44
40	Hybridization and introgression drive genome evolution of Dutch elm disease pathogens. Nature Ecology and Evolution, 2020, 4, 626-638.	3.4	44
41	Phylogenetics of Helotiales and Rhytismatales Based on Partial Small Subunit Nuclear Ribosomal DNA Sequences. Mycologia, 2001, 93, 915.	0.8	43
42	In Vivo Monitoring of Obligate Biotrophic Pathogen Growth by Kinetic PCR. Applied and Environmental Microbiology, 2005, 71, 1546-1552.	1.4	43
43	Recent advances related to poplar leaf spot and canker caused by <i>Septoria musiva</i> . Canadian Journal of Plant Pathology, 2010, 32, 122-134.	0.8	43
44	Barrier to Gene Flow Between Eastern and Western Populations of Cronartium ribicola in North America. Phytopathology, 2000, 90, 1073-1078.	1.1	42
45	Genetic diversity in populations of Cronartium ribicola in plantations and natural stands of Pinus strobus. Theoretical and Applied Genetics, 1995, 91, 1214-1221.	1.8	41
46	Impact of an 8-Year-Old Transgenic Poplar Plantation on the Ectomycorrhizal Fungal Community. Applied and Environmental Microbiology, 2009, 75, 7527-7536.	1.4	41
47	Molecular and Physiological Analysis of the Powdery Mildew Antagonist Pseudozyma flocculosa and Related Fungi. Phytopathology, 2001, 91, 249-254.	1.1	40
48	Genetic diversity in Cronartium quercuum f.sp. fusiforme on loblolly pines in southern U.S Current Genetics, 1994, 26, 359-363.	0.8	38
49	A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiological and Molecular Plant Pathology, 2004, 64, 331-341.	1.3	37
50	Poplar rust systematics and refinement of Melampsora species delineation. Fungal Diversity, 2011, 50, 227-248.	4.7	37
51	Evaluation of Molecular Markers for <i>Phytophthora ramorum</i> Detection and Identification: Testing for Specificity Using a Standardized Library of Isolates. Phytopathology, 2009, 99, 390-403.	1.1	36
52	Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity. Scientific Reports, 2017, 7, 14245.	1.6	36
53	No Evidence of an Impact on the Rhizosphere Diazotroph Community by the Expression of <i>Bacillus thuringiensis</i> Cry1Ab Toxin by Bt White Spruce. Applied and Environmental Microbiology, 2007, 73, 6577-6583.	1.4	35
54	Advancing Knowledge on Biology of Rust Fungi Through Genomics. Advances in Botanical Research, 2014, , 173-209.	0.5	35

#	Article	IF	CITATIONS
55	Biosurveillance of forest insects: part l—integration and application of genomic tools to the surveillance of non-native forest insects. Journal of Pest Science, 2019, 92, 51-70.	1.9	35
56	Oh the places they'll go: improving species distribution modelling for invasive forest pests in an uncertain world. Biological Invasions, 2021, 23, 297-349.	1.2	34
57	Genetic Structure of Cronartium ribicola Populations in Eastern Canada. Phytopathology, 1999, 89, 915-919.	1.1	33
58	Fungal Diversity, Dominance, and Community Structure in the Rhizosphere of Clonal Picea mariana Plants Throughout Nursery Production Chronosequences. Microbial Ecology, 2007, 54, 672-684.	1.4	33
59	Approaches to molecular characterization of fungal biocontrol agents: some case studies. Canadian Journal of Plant Pathology, 2001, 23, 8-12.	0.8	32
60	Assessing the potential of genotypingâ€byâ€sequencingâ€derived single nucleotide polymorphisms to identify the geographic origins of intercepted gypsy moth (<i>Lymantria dispar</i>) specimens: A proofâ€ofâ€concept study. Evolutionary Applications, 2018, 11, 325-339.	1.5	32
61	Molecular Evidence of Distinct Introductions of the European Race of Gremmeniella abietina into North America. Phytopathology, 1998, 88, 582-588.	1.1	31
62	The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils. Frontiers in Microbiology, 2013, 4, 290.	1.5	31
63	Evolutionary Quantitative Genomics of Populus trichocarpa. PLoS ONE, 2015, 10, e0142864.	1.1	31
64	A Multi-Species TaqMan PCR Assay for the Identification of Asian Gypsy Moths (Lymantria spp.) and Other Invasive Lymantriines of Biosecurity Concern to North America. PLoS ONE, 2016, 11, e0160878.	1.1	31
65	CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology. Frontiers in Plant Science, 2020, 11, 1126.	1.7	31
66	Genetic Diversity Between and Within Cankers of the White Pine Blister Rust. Phytopathology, 1996, 86, 875.	1.1	31
67	Association Analysis Identifies Melampsora ×columbiana Poplar Leaf Rust Resistance SNPs. PLoS ONE, 2013, 8, e78423.	1.1	31
68	Alteration of Soil Rhizosphere Communities following Genetic Transformation of White Spruce. Applied and Environmental Microbiology, 2007, 73, 4128-4134.	1.4	30
69	Population Structure of Mountain Pine Beetle Symbiont Leptographium longiclavatum and the Implication on the Multipartite Beetle-Fungi Relationships. PLoS ONE, 2014, 9, e105455.	1.1	30
70	Genetic Structure of Mycosphaerella populorum (Anamorph Septoria musiva) Populations in North-Central and Northeastern North America. Phytopathology, 2005, 95, 608-616.	1.1	29
71	Putative origin of clonal lineages of Amylostereum areolatum, the fungal symbiont associated with Sirex noctilio, retrieved from Pinus sylvestris, in eastern Canada. Fungal Biology, 2011, 115, 750-758.	1.1	29
72	Genome sequences of six Phytophthora species threatening forest ecosystems. Genomics Data, 2016, 10, 85-88.	1.3	29

#	Article	IF	CITATIONS
73	Poplar leaf rusts: model pathogens for a model treeThis minireview is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1127-1135.	1.2	27
74	Multiplex real-time polymerase chain reaction (PCR) for detection of <i>Phytophthora ramorum</i> , the causal agent of sudden oak death. Canadian Journal of Plant Pathology, 2009, 31, 195-210.	0.8	27
75	Effects of Transgenic Hybrid Aspen Overexpressing Polyphenol Oxidase on Rhizosphere Diversity. Applied and Environmental Microbiology, 2008, 74, 5340-5348.	1.4	26
76	Discrimination between alfalfa and potato isolates of Verticillium albo-atrum using RAPD markers. Mycological Research, 1995, 99, 1507-1512.	2.5	25
77	Identification of mycobacteria in peat moss processing plants: application of molecular biology approaches. Canadian Journal of Microbiology, 2007, 53, 92-99.	0.8	24
78	Rapid identification and detection of pine pathogenic fungi associated with mountain pine beetles by padlock probes. Journal of Microbiological Methods, 2010, 83, 26-33.	0.7	24
79	Genome-Enhanced Detection and Identification (GEDI) of plant pathogens. PeerJ, 2018, 6, e4392.	0.9	24
80	Phylogeny of <i>Gremmeniella</i> spp. based on sequences of the 5.8S rDNA and internal transcribed spacer region. Canadian Journal of Botany, 1997, 75, 693-698.	1.2	23
81	Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. Tree Physiology, 2018, 38, 457-470.	1.4	23
82	Genetic diversity of <i>Phytophthora pluvialis</i> , a pathogen of conifers, in New Zealand and the west coast of the United States of America. Plant Pathology, 2018, 67, 1131-1139.	1.2	23
83	Attributes and congruence of three molecular data sets: Inferring phylogenies among Septoria-related species from woody perennial plants. Molecular Phylogenetics and Evolution, 2006, 40, 808-829.	1.2	22
84	Impact of Endochitinase-Transformed White Spruce on Soil Fungal Biomass and Ectendomycorrhizal Symbiosis. Applied and Environmental Microbiology, 2010, 76, 2607-2614.	1.4	22
85	Current state of genetically modified plant impact on target and non-target fungi. Environmental Reviews, 2010, 18, 441-475.	2.1	21
86	Evolution and Adaptation of Forest and Crop Pathogens in the Anthropocene. Phytopathology, 2021, 111, 49-67.	1.1	21
87	Fine-Level Genetic Structure of White Pine Blister Rust Populations. Phytopathology, 1998, 88, 1187-1191.	1.1	20
88	Biosurveillance of forest insects: part Il—adoption of genomic tools by end user communities and barriers to integration. Journal of Pest Science, 2019, 92, 71-82.	1.9	20
89	<i>Morchella tomentosa</i> : a unique belowground structure and a new clade of morels. Mycologia, 2010, 102, 1082-1088.	0.8	19
90	Colonization History, Host Distribution, Anthropogenic Influence and Landscape Features Shape Populations of White Pine Blister Rust, an Invasive Alien Tree Pathogen. PLoS ONE, 2015, 10, e0127916.	1.1	19

#	Article	IF	CITATIONS
91	Genetic Diversity and the Presence of Two Distinct Groups in Ophiostoma clavigerum Associated with Dendroctonus ponderosae in British Columbia and the Northern Rocky Mountains. Phytopathology, 2007, 97, 1177-1185.	1.1	18
92	Molecular Epidemiology of White Pine Blister Rust: Recombination and Spatial Distribution. Phytopathology, 2005, 95, 793-799.	1.1	17
93	Differentiation of European and North American genotypes of <i>Phytophthora ramorum</i> by real-time polymerase chain reaction primer extension. Canadian Journal of Plant Pathology, 2007, 29, 408-420.	0.8	17
94	Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions. FEMS Microbiology Ecology, 2011, 76, 199-208.	1.3	17
95	Extensive Functional Pleiotropy of REVOLUTA Substantiated through Forward Genetics Â. Plant Physiology, 2014, 164, 548-554.	2.3	17
96	Genetic patterns reveal historical and contemporary dispersal of a tree pathogen. Biological Invasions, 2016, 18, 1781-1799.	1.2	17
97	Anthropogenic signature in the incidence and distribution of an emerging pathogen of poplars. Biological Invasions, 2016, 18, 1147-1161.	1.2	17
98	In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS ONE, 2020, 15, e0226863.	1.1	17
99	Real-time PCR assay to distinguish <i>Phytophthora ramorum</i> lineages using the cellulose binding elicitor lectin (CBEL) locus. Canadian Journal of Plant Pathology, 2014, 36, 367-376.	0.8	16
100	Prediction of poplar leaf rust epidemics from a leaf-disk assay. Canadian Journal of Forest Research, 1994, 24, 2085-2088.	0.8	15
101	Sequence-tagged sites (STS) for studies of molecular epidemiology of scleroderris canker of conifers. Theoretical and Applied Genetics, 1998, 97, 789-796.	1.8	15
102	Variability of Nuclear SSU-rDNA Group Introns Within Septoria Species: Incongruence with Host Sequence Phylogenies. Journal of Molecular Evolution, 2007, 64, 489-499.	0.8	15
103	Signatures of Post-Glacial Genetic Isolation and Human-Driven Migration in the Dothistroma Needle Blight Pathogen in Western Canada. Phytopathology, 2021, 111, 116-127.	1.1	15
104	Detection and validation of EST-derived SNPs for poplar leaf rust Melampsora medusae f. sp. deltoidae. Molecular Ecology Notes, 2007, 7, 1222-1228.	1.7	14
105	Improved detection and identification of the sudden oak death pathogen <i>Phytophthora ramorum</i> and the Port Orford cedar root pathogen <i>Phytophthora lateralis</i> . Plant Pathology, 2019, 68, 878-888.	1.2	14
106	Genome-enhanced detection and identification of fungal pathogens responsible for pine and poplar rust diseases. PLoS ONE, 2019, 14, e0210952.	1.1	14
107	Population Genomic Analyses Reveal Connectivity via Human-Mediated Transport across <i>Populus</i> Plantations in North America and an Undescribed Subpopulation of <i>Sphaerulina musiva</i> . Molecular Plant-Microbe Interactions, 2020, 33, 189-199.	1.4	14
108	Worldwide Genetic Structure Elucidates the Eurasian Origin and Invasion Pathways of Dothistroma septosporum, Causal Agent of Dothistroma Needle Blight. Journal of Fungi (Basel, Switzerland), 2021, 7, 111.	1.5	14

#	Article	IF	CITATIONS
109	DNA polymorphism and molecular diagnosis inInonotusspp Canadian Journal of Plant Pathology, 2002, 24, 194-199.	0.8	13
110	A comparative study of genetic diversity of populations of Nectria galligena and N. coccinea var. faginata in North America. Mycological Research, 2002, 106, 183-193.	2.5	13
111	Singleâ€nucleotide polymorphism discovery in <i><scp>L</scp>eptographium longiclavatum</i> , a mountain pine beetleâ€associated symbiotic fungus, using wholeâ€genome resequencing. Molecular Ecology Resources, 2014, 14, 401-410.	2.2	13
112	Realâ€ŧime <scp>PCR</scp> assays for the detection of <i>Heterobasidion irregulare</i> , <i>H.Âoccidentale, H.Âannosum</i> sensu stricto and the <i>Heterobasidion annosum</i> complex. Forest Pathology, 2017, 47, e12321.	0.5	13
113	Say hello to my little friends: how microbiota can modulate tree health. New Phytologist, 2017, 215, 508-510.	3.5	13
114	Adaptation of poplar leaf rust to Eastern cottonwood. Euphytica, 1992, 62, 69-75.	0.6	12
115	Comparison of RAPD technique and somatic incompatibility tests for the identification of <i>Phlebiopsis gigantea</i> strains. Canadian Journal of Botany, 1997, 75, 2097-2104.	1.2	12
116	Genetic Variability of Canadian Populations of the Sapstain Fungus Ophiostoma piceae. Phytopathology, 2001, 91, 369-376.	1.1	12
117	Target-specific PCR primers can detect and differentiate ophiostomatoid fungi from microbial communities associated with the mountain pine beetle Dendroctonus ponderosae. Fungal Biology, 2010, 114, 825-833.	1.1	12
118	The MAT1-1:MAT1-2 Ratio of Sporothrix globosa Isolates in Japan. Mycopathologia, 2015, 179, 81-86.	1.3	12
119	Development and Validation of Polymorphic Microsatellite Loci for the NA2 Lineage of <i>Phytophthora ramorum</i> from Whole Genome Sequence Data. Plant Disease, 2017, 101, 666-673.	0.7	12
120	The contribution of genetics and genomics to understanding the ecology of the mountain pine beetle system. Canadian Journal of Forest Research, 2019, 49, 721-730.	0.8	12
121	An Applied Empirical Framework for Invasion Science: Confronting Biological Invasion Through Collaborative Research Aimed at Tool Production. Annals of the Entomological Society of America, 2020, 113, 230-245.	1.3	12
122	Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics, 2021, 22, 326.	1.2	12
123	Quantification of Disease Progress and Defoliation in the Poplar Leaf Rust-Eastern Cottonwood Pathosystem. Phytopathology, 1993, 83, 140.	1.1	12
124	Functional categorization of unique expressed sequence tags obtained from the yeast-like growth phase of the elm pathogen Ophiostoma novo-ulmi. BMC Genomics, 2011, 12, 431.	1.2	11
125	Nucleotide polymorphisms in three genes support host and geographic speciation in tree pathogens belonging toGremmeniellaspp Canadian Journal of Botany, 2002, 80, 1151-1159.	1.2	10
126	Genetic Diversity in Poplar Leaf Rust (Melampsora medusae f. sp. deltoidae) in the Zones of Host Sympatry and Allopatry. Phytopathology, 2007, 97, 603-610.	1.1	10

#	Article	IF	CITATIONS
127	Optimization of a real-time PCR assay for the detection of the quarantine pathogen Melampsora medusae f. sp. deltoidae. Fungal Biology, 2013, 117, 389-398.	1.1	10
128	Comparative Gene Expression Analysis Reveals Mechanism of <i>Pinus contorta</i> Response to the Fungal Pathogen <i>Dothistroma septosporum</i> . Molecular Plant-Microbe Interactions, 2021, 34, 397-409.	1.4	10
129	Influence of leaf wetness, temperature, and rain on poplar leaf rust epidemics. Canadian Journal of Forest Research, 1992, 22, 1249-1254.	0.8	9
130	Molecular epidemiology of forest pathogens: from genes to landscape. Canadian Journal of Plant Pathology, 2006, 28, 167-181.	0.8	9
131	Characterization of microsatellite loci in the fungus, <i>Grosmannia clavigera</i> , a pine pathogen associated with the mountain pine beetle. Molecular Ecology Resources, 2009, 9, 1500-1503.	2.2	9
132	Simultaneous monitoring and quantification of <i>Melampsora alliiâ€populina</i> and <i>Melampsora lariciâ€populina</i> on infected poplar leaves using a duplex realâ€time <scp>PCR</scp> assay. Plant Pathology, 2016, 65, 380-391.	1.2	9
133	Molecular assays to detect the presence and viability of Phytophthora ramorum and Grosmannia clavigera. PLoS ONE, 2020, 15, e0221742.	1.1	9
134	Potential Differences and Methods of Determining Gypsy Moth Female Flight Capabilities: Implications for the Establishment and Spread in Novel Habitats. Forests, 2021, 12, 103.	0.9	9
135	Urban environments harbor greater oomycete and <i>Phytophthora</i> diversity, creating a bridgehead for potential new pathogens to natural ecosystems. Environmental DNA, 2022, 4, 1039-1051.	3.1	9
136	A sensitive real-time PCR assay for the detection of the two Melampsora medusae formae speciales on infected poplar leaves. European Journal of Plant Pathology, 2013, 136, 433-441.	0.8	8
137	Cryptic Speciation in Western North America and Eastern Eurasia of the Pathogens Responsible for Laminated Root Rot. Phytopathology, 2019, 109, 456-468.	1.1	8
138	Expansion of LINEs and species-specific DNA repeats drives genome expansion in Asian Gypsy Moths. Scientific Reports, 2019, 9, 16413.	1.6	8
139	Long-term effects of stump removal and tree species composition on the diversity and structure of soil fungal communities. FEMS Microbiology Ecology, 2020, 96, .	1.3	8
140	Development of a Rapid Loop-Mediated Isothermal Amplification Assay for the Detection of Dothistroma septosporum. Forests, 2021, 12, 362.	0.9	8
141	Patterns of colonization and spread in the fungal spruce pathogen <i>Onnia tomentosa</i> . Molecular Ecology, 2009, 18, 4422-4433.	2.0	7
142	Real-time PCR detection and discrimination of the <i>Ceratocystis coerulescens</i> complex and of the fungal species from the <i>Ceratocystis polonica</i> complex validated on pure cultures and bark beetle vectors. Canadian Journal of Forest Research, 2014, 44, 1103-1111.	0.8	7
143	An Overview of Canadian Research Activities on Diseases Caused by <i>Phytophthora ramorum</i> : Results, Progress, and Challenges. Plant Disease, 2018, 102, 1218-1233.	0.7	7
144	A needle in a haystack: a multigene TaqMan assay for the detection of Asian gypsy moths in bulk pheromone trap samples. Biological Invasions, 2019, 21, 1843-1856.	1.2	7

#	Article	IF	CITATIONS
145	Assessing Niche Shifts and Conservatism by Comparing the Native and Post-Invasion Niches of Major Forest Invasive Species. Insects, 2020, 11, 479.	1.0	7
146	Genomeâ€scale phylogeography resolves the native population structure of the Asian longhorned beetle, <i>Anoplophora glabripennis</i> (Motschulsky). Evolutionary Applications, 2022, 15, 934-953.	1.5	7
147	Contributions of genomics to forest pathology. Canadian Journal of Plant Pathology, 2012, 34, 20-28.	0.8	6
148	Reassessment of the status of <i>Lymantria albescens</i> and <i>Lymantria postalba</i> (Lepidoptera:) Tj ETQqO sequence data. Systematic Entomology, 2020, 45, 493-504.	0 0 rgBT / 1.7	Overlock 10 6
149	DNA-barcoding identification of <i>Dothistroma septosporum</i> on <i>Pinus contorta</i> var. <i>latifolia, P. banksiana</i> and their hybrid in northern Alberta, Canada. Canadian Journal of Plant Pathology, 2021, 43, 472-479.	0.8	6
150	Swiss needle cast tolerance in British Columbia's coastal Douglas-fir breeding population. Forestry, 2021, 94, 193-203.	1.2	6
151	Population Structure of Basidiomycetes. , 1999, , 251-281.		6
152	Screening of ESTs from Septoria musiva (teleomorph Mycosphaerella populorum) for detection of SSR and PCR-RFLP markers. Molecular Ecology Notes, 2006, 6, 356-358.	1.7	5
153	Sequencing, assembly and annotation of the whole-insect genome of <i>Lymantria dispar dispar</i> , the European gypsy moth. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
154	Fine-scale genetic diversity and relatedness in fungi associated with the mountain pine beetle. Canadian Journal of Forest Research, 2019, 49, 933-941.	0.8	4
155	Mycorrhiza: genotype assignment using phylogenetic networks. Bioinformatics, 2020, 36, 212-220.	1.8	4
156	The Future of Forest Pathology in North America. Frontiers in Forests and Global Change, 2021, 4, .	1.0	4
157	Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Communications Biology, 2022, 5, 477.	2.0	4
158	Stump removal and tree species composition promote a bacterial microbiome that may be beneficial in the suppression of root disease. FEMS Microbiology Ecology, 2020, 97, .	1.3	3
159	Supervised learning on phylogenetically distributed data. Bioinformatics, 2020, 36, i895-i902.	1.8	2
160	<i>Phytophthora</i> species associated with red alder dieback in British Columbia, Canada. Canadian Journal of Plant Pathology, 2022, 44, 549-558.	0.8	2
161	Genetic Lineage Distribution Modeling to Predict Epidemics of a Conifer Disease. Frontiers in Forests and Global Change, 2022, 4, .	1.0	2
162	Modeling the genetic response of diameter growth in poplar hybrids growing in the center of Chile in the presence of Septoria canker. Tree Genetics and Genomes, 2022, 18, .	0.6	2

0

#	ARTICLE	IF	CITATIONS
163	Fingerprinting techniques as tools towards molecular quality control of Pseudozyma flocculosa. Mycological Research, 2005, 109, 335-341.	2.5	1
164	Neofusicoccum arbuti: a hidden threat toArbutus menziesiicharacterized by widespread latent infections and a broad host range. Canadian Journal of Plant Pathology, 2016, 38, 70-81.	0.8	1
165	Variable genome evolution in fungi after transposon-mediated amplification of a housekeeping gene. Mobile DNA, 2019, 10, 37.	1.3	1
166	Molecular Epidemiology of Tree Pathogens. Forestry Sciences, 2000, , 375-393.	0.4	1
167	Chemical, Bioactivity, and Biosynthetic Screening of Epiphytic Fungus Zasmidium pseudotsugae. Molecules, 2020, 25, 2358.	1.7	1
168	Title is missing!. , 2020, 15, e0226863.		0
169	Title is missing!. , 2020, 15, e0226863.		0
170	Title is missing!. , 2020, 15, e0226863.		0
171	Title is missing!. , 2020, 15, e0226863.		0
172	Title is missing!. , 2020, 15, e0226863.		0
173	Title is missing!. , 2020, 15, e0221742.		0
174	Title is missing!. , 2020, 15, e0221742.		0
175	Title is missing!. , 2020, 15, e0221742.		0
176	Title is missing!. , 2020, 15, e0221742.		0
177	Evidence of coevolution between <i>Cronartium harknessii</i> lineages and their corresponding hosts, lodgepole pine and jack pine. Phytopathology, 2022, , .	1.1	0

178 Rust diseases of forest trees. , 2022, , 201-213.