Claudia Schulte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9099043/publications.pdf

Version: 2024-02-01

90 papers

10,651 citations

39 h-index 90 g-index

95 all docs 95 docs citations 95 times ranked 14052 citing authors

#	Article	IF	Citations
1	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	21.4	1,745
2	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	21.4	1,685
3	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
4	Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet, The, 2011, 377, 641-649.	13.7	845
5	Parkinson's disease age at onset genomeâ€wide association study: Defining heritability, genetic loci, and αâ€synuclein mechanisms. Movement Disorders, 2019, 34, 866-875.	3.9	258
6	<i>SNCA</i> variants are associated with increased risk for multiple system atrophy. Annals of Neurology, 2009, 65, 610-614.	5.3	257
7	Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease*. Brain, 2005, 128, 3000-3011.	7.6	247
8	<i>GBA</i> â€associated Parkinson's disease: Reduced survival and more rapid progression in a prospective longitudinal study. Movement Disorders, 2015, 30, 407-411.	3.9	214
9	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
10	Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiology of Disease, 2009, 34, 107-112.	4.4	177
11	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2012, 21, 4996-5009.	2.9	176
12	Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Annals of Neurology, 2011, 70, 964-973.	5.3	168
13	S100B is increased in Parkinson's disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain, 2012, 135, 3336-3347.	7.6	159
14	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	7.6	149
15	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.1	139
16	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	2.9	122
17	Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis. Human Molecular Genetics, 2010, 19, 4437-4452.	2.9	121
18	The transcription factor PITX3 is associated with sporadic Parkinson's disease. Neurobiology of Aging, 2009, 30, 731-738.	3.1	108

#	Article	IF	CITATIONS
19	Genetic basis of Parkinson's disease: inheritance, penetrance, and expression. The Application of Clinical Genetics, 2011, 4, 67.	3.0	96
20	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	3.1	96
21	Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer Detection in Symptomatic Patients. JAMA Oncology, 2020, 6, 714.	7.1	84
22	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77
23	Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson's disease. Brain, 2017, 140, 2444-2459.	7.6	76
24	A combined miRNA–piRNA signature to detect Alzheimer's disease. Translational Psychiatry, 2019, 9, 250.	4.8	74
25	ATAXIA WITH OPHTHALMOPLEGIA OR SENSORY NEUROPATHY IS FREQUENTLY CAUSED BY <i>POLG</i> MUTATIONS. Neurology, 2009, 73, 898-900.	1.1	69
26	Alterations in Blood Monocyte Functions in Parkinson's Disease. Movement Disorders, 2019, 34, 1711-1721.	3.9	67
27	Machine Learning to Detect Alzheimer's Disease from Circulating Non-coding RNAs. Genomics, Proteomics and Bioinformatics, 2019, 17, 430-440.	6.9	67
28	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
29	Clinical and brain imaging characteristics in leucineâ€rich repeat kinase 2–associated PD and asymptomatic mutation carriers. Movement Disorders, 2011, 26, 2335-2342.	3.9	65
30	Inflammatory profile in LRRK2-associated prodromal and clinical PD. Journal of Neuroinflammation, 2016, 13, 122.	7.2	57
31	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	3.9	57
32	ARHGEF7 (BETA-PIX) Acts as Guanine Nucleotide Exchange Factor for Leucine-Rich Repeat Kinase 2. PLoS ONE, 2010, 5, e13762.	2.5	55
33	A Novel SNCA A30G Mutation Causes Familial Parkinson's Disease. Movement Disorders, 2021, 36, 1624-1633.	3.9	54
34	A large genome scan for rare CNVs in amyotrophic lateral sclerosis. Human Molecular Genetics, 2010, 19, 4091-4099.	2.9	51
35	Analysis of Genome-Wide Association Studies of Alzheimer Disease and of Parkinson Disease to Determine If These 2 Diseases Share a Common Genetic Risk. JAMA Neurology, 2013, 70, 1268-76.	9.0	51
36	Singleâ€cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene. Annals of Neurology, 2009, 66, 792-798.	5.3	49

#	Article	IF	CITATIONS
37	NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis. Human Molecular Genetics, 2012, 21, 2497-2502.	2.9	49
38	Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathologica Communications, 2021, 9, 175.	5.2	49
39	Polymorphisms in TGFB1 and PDGFRB are associated with Moyamoya disease in European patients. Acta Neurochirurgica, 2010, 152, 2153-2160.	1.7	46
40	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
41	Use of support vector machines for disease risk prediction in genome-wide association studies: Concerns and opportunities. Human Mutation, 2012, 33, 1708-1718.	2.5	42
42	Serum and Cerebrospinal Fluid Uric Acid Levels in Lewy Body Disorders: Associations with Disease Occurrence and Amyloid-Î ² Pathway. Journal of Alzheimer's Disease, 2011, 27, 119-126.	2.6	40
43	<i>GBA</i> -associated PD. Neurology, 2012, 79, 213-220.	1.1	40
44	The Mutation Matters: <scp>CSF</scp> Profiles of <scp>GCase</scp> , Sphingolipids, αâ€5ynuclein in <scp>PD_{GBA}</scp> . Movement Disorders, 2021, 36, 1216-1228.	3.9	40
45	Analysis of ACTA2 in European Moyamoya disease patients. European Journal of Paediatric Neurology, 2011, 15, 117-122.	1.6	38
46	SNCA: Major genetic modifier of age at onset of Parkinson's disease. Movement Disorders, 2013, 28, 1217-1221.	3.9	36
47	Comparable Autoantibody Serum Levels against Amyloid- and Inflammation-Associated Proteins in Parkinson's Disease Patients and Controls. PLoS ONE, 2014, 9, e88604.	2.5	36
48	Soluble <scp>CD163</scp> Changes Indicate Monocyte Association With Cognitive Deficits in Parkinson's Disease. Movement Disorders, 2021, 36, 963-976.	3.9	35
49	The CST3 BB Genotype and Low Cystatin C Cerebrospinal Fluid Levels are Associated with Dementia in Lewy Body Disease. Journal of Alzheimer's Disease, 2010, 19, 937-942.	2.6	32
50	Parkinson's Disease: <i>Glucocerebrosidase 1</i> Mutation Severity Is Associated with CSF Alphaâ€Synuclein Profiles. Movement Disorders, 2020, 35, 495-499.	3.9	32
51	<i>POLG</i> , but not <i>PEO1</i> , is a frequent cause of cerebellar ataxia in Central Europe. Movement Disorders, 2010, 25, 2678-2682.	3.9	31
52	Insufficient evidence for pathogenicity of SNCA His50Gln (H50Q) in Parkinson's disease. Neurobiology of Aging, 2018, 64, 159.e5-159.e8.	3.1	30
53	Phenylalanine Effects on Brain Function in Adult Phenylketonuria. Neurology, 2021, 96, e399-e411.	1.1	29
54	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5. 3	29

#	Article	IF	CITATIONS
55	PARK11 gene (GIGYF2) variants Asn56Ser and Asn457Thr are not pathogenic for Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 532-534.	2.2	28
56	Effect of genetic variation in <i>Kv1.3</i> on olfactory function. Diabetes/Metabolism Research and Reviews, 2009, 25, 523-527.	4.0	27
57	Common genetic polymorphisms in Moyamoya and atherosclerotic disease in Europeans. Child's Nervous System, 2011, 27, 245-252.	1.1	24
58	Long-term follow-up of subthalamic nucleus stimulation in glucocerebrosidase-associated Parkinson's disease. Journal of Neurology, 2012, 259, 1970-1972.	3.6	24
59	Dementia with lewy bodies: <i>GBA1</i> mutations are associated with cerebrospinal fluid alphaâ€synuclein profile. Movement Disorders, 2019, 34, 1069-1073.	3.9	24
60	Neprilysin Activity in Cerebrospinal Fluid is Associated with Dementia and Amyloid-Î ² 42 Levels in Lewy Body Disease. Journal of Alzheimer's Disease, 2010, 22, 933-938.	2.6	23
61	Selenium speciation analysis in the cerebrospinal fluid of patients with Parkinson's disease. Journal of Trace Elements in Medicine and Biology, 2020, 57, 126412.	3.0	23
62	Elemental fingerprint: Reassessment of a cerebrospinal fluid biomarker for Parkinson's disease. Neurobiology of Disease, 2020, 134, 104677.	4.4	23
63	Serum and Cerebrospinal Fluid Levels of Transthyretin in Lewy Body Disorders with and without Dementia. PLoS ONE, 2012, 7, e48042.	2.5	23
64	Intraindividual Neurofilament Dynamics in Serum Mark the Conversion to Sporadic Parkinson's Disease. Movement Disorders, 2020, 35, 1233-1238.	3.9	22
65	GBA-associated PD: chances and obstacles for targeted treatment strategies. Journal of Neural Transmission, 2022, 129, 1219-1233.	2.8	22
66	Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease. PLoS ONE, 2012, 7, e28787.	2.5	21
67	Neurodegenerative CSF markers in genetic and sporadic PD: Classification and prediction in a longitudinal study. Parkinsonism and Related Disorders, 2015, 21, 1427-1434.	2.2	20
68	Changes in CD163+, CD11b+, and CCR2+ peripheral monocytes relate to Parkinson's disease and cognition. Brain, Behavior, and Immunity, 2022, 101, 182-193.	4.1	20
69	Cognitive impairment in Glucocerebrosidase (GBA)â€associated PD: Not primarily associated with cerebrospinal fluid Abeta and Tau profiles. Movement Disorders, 2017, 32, 1780-1783.	3.9	19
70	A single-nucleotide polymorphism of the osteopontin gene may contribute to a susceptibility to Lewy body disease. Journal of Neural Transmission, 2009, 116, 599-605.	2.8	16
71	Analysis of TGFB1 in European and Japanese Moyamoya disease patients. European Journal of Medical Genetics, 2012, 55, 531-534.	1.3	16
72	No differences of butyrylcholinesterase protein activity and allele frequency in Lewy body diseases. Neurobiology of Disease, 2009, 35, 296-301.	4.4	15

#	Article	IF	Citations
73	<scp>A</scp> lphaâ€synuclein gene variants may predict neurostimulation outcome. Movement Disorders, 2016, 31, 601-603.	3.9	15
74	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	3.9	15
75	Complex hyperkinetic movement disorders associated with <i>POLG</i> mutations. Movement Disorders, 2010, 25, 2472-2475.	3.9	14
76	Prospective longitudinal course of cognition in older subjects with mild parkinsonian signs. Alzheimer's Research and Therapy, 2016, 8, 42.	6.2	14
77	Parkinson's disease: evolution of cognitive impairment and CSF Aβ _{1–42} profiles in a prospective longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 165-170.	1.9	14
78	No genetic association between attention-deficit/hyperactivity disorder (ADHD) and Parkinson's disease in nine ADHD candidate SNPs. ADHD Attention Deficit and Hyperactivity Disorders, 2017, 9, 121-127.	1.7	13
79	SNPs in AÎ ² clearance proteins. Neurology, 2017, 89, 2335-2340.	1.1	13
80	The longevity gene Klotho and its cerebrospinal fluid protein profiles as a modifier for Parkinson´s disease. European Journal of Neurology, 2021, 28, 1557-1565.	3.3	12
81	Polygenic load: Earlier disease onset but similar longitudinal progression in Parkinson's disease. Movement Disorders, 2018, 33, 1349-1353.	3.9	10
82	No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors. Translational Neurodegeneration, 2019, $8,11.$	8.0	10
83	Mitochondrial and autophagy-lysosomal pathway polygenic risk scores predict Parkinson's disease. Molecular and Cellular Neurosciences, 2022, 121, 103751.	2.2	9
84	Replication of a Novel Parkinson's Locus in a European Ancestry Population. Movement Disorders, 2021, 36, 1689-1695.	3.9	8
85	Biallelic Parkin (PARK2) mutations can cause a bvFTD phenotype without clinically relevant parkinsonism. Parkinsonism and Related Disorders, 2018, 55, 145-147.	2.2	6
86	No association between polymorphisms in the glutamate transporter <i>SLC1A2</i> and Parkinson's disease. Movement Disorders, 2013, 28, 1305-1306.	3.9	5
87	The Interaction between <scp><i>HLAâ€DRB1</i></scp> and Smoking in Parkinson's Disease Revisited. Movement Disorders, 2022, 37, 1929-1937.	3.9	4
88	Further delineation of the association signal on chromosome 5 from the first whole genome association study in Parkinson's disease. Neurobiology of Aging, 2009, 30, 1706-1709.	3.1	1
89	Cholinergic Pathway SNPs and Postural Control in 477 Older Adults. Frontiers in Aging Neuroscience, 2018, 10, 260.	3.4	1
90	POLG and PEO1 (Twinkle) mutations are infrequent in PSP-like atypical parkinsonism: a preliminary screening study. Journal of Neurology, 2012, 259, 2232-2233.	3.6	0