Thomas Blumenstock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098928/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification of CH ₄ emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI. Atmospheric Chemistry and Physics, 2022, 22, 295-317.	1.9	21
2	Global Atmospheric OCS Trend Analysis From 22 NDACC Stations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	12
3	Investigation of spaceborne trace gas products over StÂPetersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations. Atmospheric Measurement Techniques, 2022, 15, 2199-2229.	1.2	5
4	Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON). Atmospheric Measurement Techniques, 2022, 15, 2433-2463.	1.2	10
5	Improved ozone monitoring by ground-based FTIR spectrometry. Atmospheric Measurement Techniques, 2022, 15, 2557-2577.	1.2	4
6	Formaldehyde total column densities over Mexico City: comparison between multi-axis differential optical absorption spectroscopy and solar-absorption Fourier transform infrared measurements. Atmospheric Measurement Techniques, 2021, 14, 595-613.	1.2	4
7	Emission Monitoring Mobile Experiment (EMME): an overview and first results of the St.ÂPetersburg megacity campaign 2019. Atmospheric Measurement Techniques, 2021, 14, 1047-1073.	1.2	23
8	Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC). Atmospheric Measurement Techniques, 2021, 14, 1239-1252.	1.2	9
9	COVIDâ€19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. Geophysical Research Letters, 2021, 48, e2020GL091987.	1.5	51
10	Intercomparison of arctic XH ₂ O observations from three ground-based Fourier transform infrared networks and application for satellite validation. Atmospheric Measurement Techniques, 2021, 14, 1993-2011.	1.2	6
11	Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature, 2021, 593, 233-237.	13.7	71
12	The CO ₂ integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling. Atmospheric Chemistry and Physics, 2021, 21, 10939-10963.	1.9	12
13	Long-term column-averaged greenhouse gas observations using a COCCON spectrometer at the high-surface-albedo site in Gobabeb, Namibia. Atmospheric Measurement Techniques, 2021, 14, 5887-5911.	1.2	12
14	Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 2021, 14, 6249-6304.	1.2	57
15	Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory – overview and long-term comparison to other techniques. Atmospheric Chemistry and Physics, 2021, 21, 15519-15554.	1.9	11
16	Spatial distributions of <i>X</i> _{CO₂&an seasonal cycle amplitude and phase over northern high-latitude regions. Atmospheric Chemistry and Physics, 2021, 21, 16661-16687.}	1p;lt:/sub&	amp;gt;
17	Observed Hemispheric Asymmetry in Stratospheric Transport Trends From 1994 to 2018. Geophysical Research Letters, 2020, 47, e2020GL088567.	1.5	13
18	Spectral Aerosol Optical Depth Retrievals by Ground-Based Fourier Transform Infrared Spectrometry.	1.8	4

Remote Sensing, 2020, 12, 3148.

#	Article	IF	CITATIONS
19	Fourier transform infrared time series of tropospheric HCN in eastern China: seasonality, interannual variability, and source attribution. Atmospheric Chemistry and Physics, 2020, 20, 5437-5456.	1.9	17
20	Ground-based FTIR observation of hydrogen chloride (HCl) over Hefei, China, and comparisons with GEOS-Chem model data and other ground-based FTIR stations data. Optics Express, 2020, 28, 8041.	1.7	29
21	Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem. Atmospheric Chemistry and Physics, 2020, 20, 12813-12851.	1.9	26
22	TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmospheric Measurement Techniques, 2020, 13, 3751-3767.	1.2	66
23	Atmospheric ammonia (NH ₃) over the Paris megacity: 9Âyears of total column observations from ground-based infrared remote sensing. Atmospheric Measurement Techniques, 2020, 13, 3923-3937.	1.2	10
24	Intercomparison of atmospheric CO&Itsub>2&It/sub> and CH&Itsub>4&It/sub> abundances on regional scales in boreal areas using Copernicus Atmosphere Monitoring Service (CAMS) analysis, COllaborative Carbon Column Observing Network (COCCON) spectrometers, and Sentinel-5 Precursor satellite observations. Atmospheric	1.2	23
25	Measurement Techniques, 2020, 13:4751-4771 Intercomparison of Tow- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO ₂ , CH ₄ , and CO. Atmospheric Measurement Techniques, 2020, 13:4791-4839.	1.2	28
26	Quality controls, bias, and seasonality of CO ₂ columns in the boreal forest with Orbiting Carbon Observatory-2, Total Carbon Column Observing Network, and EM27/SUN measurements. Atmospheric Measurement Techniques, 2020, 13, 5033-5063.	1.2	22
27	Methane and nitrous oxide from ground-based FTIR at Addis Ababa: observations, error analysis, and comparison with satellite data. Atmospheric Measurement Techniques, 2020, 13, 4079-4096.	1.2	4
28	An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model. Atmospheric Measurement Techniques, 2019, 12, 1393-1408.	1.2	17
29	Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmospheric Measurement Techniques, 2019, 12, 1513-1530.	1.2	82
30	Separation of Methane Emissions From Agricultural and Natural Gas Sources in the Colorado Front Range. Geophysical Research Letters, 2019, 46, 3990-3998.	1.5	34
31	XCO ₂ in an emission hot-spot region: the COCCON Paris campaign 2015. Atmospheric Chemistry and Physics, 2019, 19, 3271-3285.	1.9	35
32	Variability in the Gas Composition of the Popocatépetl Volcanic Plume. Frontiers in Earth Science, 2019, 7, .	0.8	18
33	The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmospheric Chemistry and Physics, 2018, 18, 4935-4964.	1.9	162
34	The MUSICA IASI CH ₄ and N ₂ O products and their comparison to HIPPO, GAW and NDACC FTIR references. Atmospheric Measurement Techniques, 2018, 11, 4171-4215.	1.2	18
35	NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques, 2018, 11, 5049-5073.	1.2	37
36	An update on ozone profile trends for the period 2000 to 2016. Atmospheric Chemistry and Physics, 2017, 17, 10675-10690.	1.9	93

#	Article	IF	CITATIONS
37	The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005. Atmospheric Chemistry and Physics, 2017, 17, 2255-2277.	1.9	33
38	Quality assessment of integrated water vapour measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques. Atmospheric Measurement Techniques, 2017, 10, 4521-4536.	1.2	17
39	Background CO ₂ levels and error analysis from ground-based solar absorption IR measurements in central Mexico. Atmospheric Measurement Techniques, 2017, 10, 2425-2434.	1.2	8
40	Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) <i>X</i> _{CO₂&am measurements with TCCON. Atmospheric Measurement Techniques, 2017, 10, 2209-2238.}	p; lt \$sub&a	an ap ,gt;
41	Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC. Atmospheric Measurement Techniques, 2017, 10, 1927-1956.	1.2	44
42	Ground-based remote sensing of O ₃ by high- and medium-resolution FTIR spectrometers over the Mexico City basin. Atmospheric Measurement Techniques, 2017, 10, 2703-2725.	1.2	9
43	Tropospheric water vapour isotopologue data (H ₂ ¹⁶ O,) Tj ETQq1 1 0.78	4314 rgB 3.7	Г /Overlock 1 26
44	Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements. Atmospheric Measurement Techniques, 2016, 9, 2303-2313.	1.2	39
45	Intercomparison of stratospheric nitrogen dioxide columns retrieved from ground-based DOAS and FTIR and satellite DOAS instruments over the subtropical Izana station. Atmospheric Measurement Techniques, 2016, 9, 4471-4485.	1.2	7
46	Bias corrections of GOSAT SWIR XCO ₂ and XCH ₄ with TCCON data and their evaluation using aircraft measurement data. Atmospheric Measurement Techniques, 2016, 9, 3491-3512.	1.2	40
47	Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere. Atmospheric Measurement Techniques, 2016, 9, 4843-4859.	1.2	23
48	Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe. Atmospheric Measurement Techniques, 2016, 9, 2223-2239.	1.2	17
49	Consistency and quality assessment of the Metop-A/IASI and Metop-B/IASI operational trace gas products (O ₃ , CO, N ₂ O,)	[j ETQq1 1 1.2	. 0.784314 r 20
50	Subtropical North Atlantic, Atmospheric Measurement Techniques, 2016, 9, 2315-2333. Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric {H ₂ O, <i>Π</i> D} pairs – a review. Atmospheric Measurement Techniques, 2016, 9, 2845-2875.	1.2	42
51	Improved retrieval of gas abundances from near-infrared solar FTIR spectra measured at the Karlsruhe TCCON station. Atmospheric Measurement Techniques, 2016, 9, 669-682.	1.2	23
52	Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmospheric Chemistry and Physics, 2015, 15, 2915-2933.	1.9	76
53	Accurate mobile remote sensing of XCO ₂ and XCH ₄ latitudinal transects from aboard a research vessel. Atmospheric Measurement Techniques, 2015, 8, 5023-5038.	1.2	41
54	Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions. Atmospheric Measurement Techniques, 2015, 8, 3047-3057.	1.2	70

#	Article	IF	CITATIONS
55	Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmospheric Measurement Techniques, 2015, 8, 3277-3295.	1.2	34
56	Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin. Atmospheric Measurement Techniques, 2015, 8, 3059-3068.	1.2	96
57	Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area. , 2015, , .		2
58	Using XCO ₂ retrievals for assessing the long-term consistency of NDACC/FTIR data sets. Atmospheric Measurement Techniques, 2015, 8, 1555-1573.	1.2	39
59	Validation of SCIAMACHY HDO/H ₂ O measurements using the TCCON and NDACC-MUSICA networks. Atmospheric Measurement Techniques, 2015, 8, 1799-1818.	1.2	17
60	Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products. Atmospheric Measurement Techniques, 2015, 8, 483-503.	1.2	24
61	The Greenhouse Gas Climate Change Initiative (GHC-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 2015, 162, 344-362.	4.6	112
62	The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO ₂ and CH ₄ retrieval algorithm products with measurements from the TCCON. Atmospheric Measurement Techniques, 2014, 7, 1723-1744.	1.2	70
63	Quality assessment of ozone total column amounts as monitored by ground-based solar absorption spectrometry in the near infrared (> 3000 cm ^{â^1}). Atmospheric Measurement Techniques, 2014, 7, 3071-3084.	1.2	9
64	Tropospheric CH ₄ signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements. Atmospheric Measurement Techniques, 2014, 7, 2337-2360.	1.2	38
65	The MUSICA MetOp/IASI H ₂ O and ÎƊ products: characterisation and long-term comparison to NDACC/FTIR data. Atmospheric Measurement Techniques, 2014, 7, 2719-2732.	1.2	27
66	Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 2014, 515, 104-107.	13.7	110
67	Inferring regional sources and sinks of atmospheric CO ₂ from GOSAT XCO ₂ data. Atmospheric Chemistry and Physics, 2014, 14, 3703-3727.	1.9	120
68	Validation of the IASI operational CH4 and N2O products using ground-based Fourier Transform Spectrometer: preliminary results at the Izaña Observatory (28źN, 17źW). Annals of Geophysics, 2014, , .	0.5	6
69	Simultaneous retrieval of atmospheric CO ₂ and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites. Applied Optics, 2013, 52, 1339.	0.9	15
70	A compact and low resolution spectrometer for the inversion of water vapor total column amounts. , 2013, , .		0
71	Retrieval and satellite intercomparison of O ₃ measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia. Atmospheric Measurement Techniques, 2013, 6, 495-509.	1.2	11
72	A method to correct sampling ghosts in historic near-infrared Fourier transform spectrometer (FTS) measurements, Atmospheric Measurement Techniques, 2013, 6, 1981-1992,	1.2	22

#	Article	IF	CITATIONS
73	Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring. Atmospheric Measurement Techniques, 2013, 6, 3527-3537.	1.2	36
74	XCO ₂ -measurements with a tabletop FTS using solar absorption spectroscopy. Atmospheric Measurement Techniques, 2012, 5, 2969-2980.	1.2	108
75	Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry. Atmospheric Measurement Techniques, 2012, 5, 2917-2931.	1.2	46
76	Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA. Atmospheric Measurement Techniques, 2012, 5, 3007-3027.	1.2	69
77	Long-term validation of tropospheric column-averaged CH ₄ mole fractions obtained by mid-infrared ground-based FTIR spectrometry. Atmospheric Measurement Techniques, 2012, 5, 1425-1441.	1.2	48
78	Validation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC. Atmospheric Measurement Techniques, 2012, 5, 2751-2761.	1.2	45
79	A multi-instrument comparison of integrated water vapour measurements at a high latitude site. Atmospheric Chemistry and Physics, 2012, 12, 10925-10943.	1.9	55
80	Technical Note: Latitude-time variations of atmospheric column-average dry air mole fractions of CO ₂ , CH ₄ and N ₂ O. Atmospheric Chemistry and Physics, 2012, 12, 7767-7777.	1.9	25
81	Calibration of column-averaged CH ₄ over European TCCON FTS sites with airborne in-situ measurements. Atmospheric Chemistry and Physics, 2012, 12, 8763-8775.	1.9	55
82	Calibration of TCCON column-averaged CO ₂ : the first aircraft campaign over European TCCON sites. Atmospheric Chemistry and Physics, 2011, 11, 10765-10777.	1.9	120
83	Trends of HCl, ClONO ₂ , and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations. Atmospheric Chemistry and Physics, 2011, 11, 4669-4677.	1.9	21
84	A new method to detect long term trends of methane (CH ₄) and nitrous oxide (N ₂ O) total columns measured within the NDACC ground-based high resolution solar FTIR network. Atmospheric Chemistry and Physics, 2011, 11, 6167-6183	1.9	46
85	Carbon monoxide (CO) and ethane (C ₂ H ₆) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the FMFP model Atmospheric Chemistry and Physics 2011, 11, 9253-9269	1.9	53
86	Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy. Atmospheric Measurement Techniques, 2011, 4, 2323-2331.	1.2	9
87	Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers. Atmospheric Measurement Techniques, 2011, 4, 47-54.	1.2	74
88	Comparison of ground-based FTIR and Brewer O ₃ total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments. Atmospheric Measurement Techniques, 2011, 4, 535-546.	1.2	49
89	The ground-based FTIR network's potential for investigating the atmospheric water cycle. Atmospheric Chemistry and Physics, 2010, 10, 3427-3442.	1.9	50
90	Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92. Atmospheric Measurement Techniques, 2010, 3, 323-338.	1.2	107

#	Article	IF	CITATIONS
91	Validation of five years (2003–2007) of SCIAMACHY CO total column measurements using ground-based spectrometer observations. Atmospheric Measurement Techniques, 2010, 3, 1457-1471.	1.2	31
92	Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON). Atmospheric Measurement Techniques, 2010, 3, 1785-1795.	1.2	17
93	Winter to winter variability of chlorine activation and ozone loss as observed by ground-based FTIR measurements at Kiruna since winter 1993/94. International Journal of Remote Sensing, 2009, 30, 4055-4064.	1.3	6
94	Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2009, 9, 287-343.	1.9	134
95	Validation of version-4.61 methane and nitrous oxide observed by MIPAS. Atmospheric Chemistry and Physics, 2009, 9, 413-442.	1.9	50
96	Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere. Atmospheric Chemistry and Physics, 2008, 8, 2421-2435.	1.9	85
97	Validation of NO ₂ and NO from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2008, 8, 5801-5841.	1.9	64
98	Validation of ACE-FTS N ₂ O measurements. Atmospheric Chemistry and Physics, 2008, 8, 4759-4786.	1.9	76
99	Comparison of ground-based Brewer and FTIR total column O ₃ monitoring techniques. Atmospheric Chemistry and Physics, 2008, 8, 5535-5550.	1.9	51
100	Quality assessment of O ₃ profiles measured by a state-of-the-art ground-based FTIR observing system. Atmospheric Chemistry and Physics, 2008, 8, 5579-5588.	1.9	48
101	Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl ₃ F and CCl ₂ using space-, balloon- and ground-based instrument observations. Atmospheric Chemistry and Physics, 2008, 8, 6199-6221.	1.9	91
102	Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments. Atmospheric Chemistry and Physics, 2008, 8, 6719-6727.	1.9	109
103	Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations. Atmospheric Chemistry and Physics, 2008, 8, 6865-6886.	1.9	95
104	Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry. Atmospheric Chemistry and Physics, 2007, 7, 1305-1312.	1.9	34
105	Validation of MIPAS-ENVISAT NO ₂ operational data. Atmospheric Chemistry and Physics, 2007, 7, 3261-3284.	1.9	57
106	Comparisons between ground-based FTIR and MIPAS N ₂ O and HNO ₃ profiles before and after assimilation in BASCOE. Atmospheric Chemistry and Physics, 2007, 7, 377-396.	1.9	59
107	Geophysical validation of MIPAS-ENVISAT operational ozone data. Atmospheric Chemistry and Physics, 2007, 7, 4807-4867.	1.9	130
108	Validation of nitric acid retrieved by the IMK-IAA processor from MIPAS/ENVISAT measurements. Atmospheric Chemistry and Physics, 2007, 7, 721-738.	1.9	31

#	Article	IF	CITATIONS
109	Validation of MIPAS HNO ₃ operational data. Atmospheric Chemistry and Physics, 2007, 7, 4905-4934.	1.9	48
110	Nitric acid measurements at Eureka obtained in winter 2001–2002 using solar and lunar Fourier transform infrared absorption spectroscopy: Comparisons with observations at Thule and Kiruna and with results from three-dimensional models. Journal of Geophysical Research, 2007, 112, .	3.3	12
111	Comparison of ILAS-II and ground-based FTIR measurements of O3, HNO3, N2O, and CH4over Kiruna, Sweden. Journal of Geophysical Research, 2006, 111, .	3.3	19
112	Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH ₄ , CO ₂ and N ₂ O. Atmospheric Chemistry and Physics, 2006, 6, 1953-1976.	1.9	103
113	Ground-based remote sensing of HDO/H ₂ O ratio profiles: introduction and validation of an innovative retrieval approach. Atmospheric Chemistry and Physics, 2006, 6, 4705-4722.	1.9	76
114	Water vapour profiles by ground-based FTIR spectroscopy: study for an optimised retrieval and its validation. Atmospheric Chemistry and Physics, 2006, 6, 811-830.	1.9	81
115	Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/01. Atmospheric Chemistry and Physics, 2006, 6, 897-905.	1.9	37
116	Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izaña (28° N, 16° W): Five-year record, error analysis, and comparison with 3-D CTMs. Atmospheric Chemistry and Physics, 2005, 5, 153-167.	1.9	59
117	Ozone profiles and total column amounts derived at Izaña, Tenerife Island, from FTIR solar absorption spectra, and its validation by an intercomparison to ECC-sonde and Brewer spectrometer measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91, 245-274.	1.1	33
118	Evidence of reduced measurement uncertainties from an FTIR instrument intercomparison at Kiruna, Sweden. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96, 75-84.	1.1	21
119	The exploitation of ground-based Fourier transform infrared observations for the evaluation of tropospheric trends of greenhouse gases over Europe. Journal of Integrative Environmental Sciences, 2005, 2, 283-293.	0.8	12
120	Comparisons between ACE-FTS and ground-based measurements of stratospheric HCl and ClONO2loadings at northern latitudes. Geophysical Research Letters, 2005, 32, .	1.5	28
121	A quantitative assessment of the 1998 carbon monoxide emission anomaly in the Northern Hemisphere based on total column and surface concentration measurements. Journal of Geophysical Research, 2004, 109, .	3.3	82
122	Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. Journal of Geophysical Research, 2003, 108, .	3.3	86
123	Vortexwide denitrification of the Arctic polar stratosphere in winter 1999/2000 determined by remote observations. Journal of Geophysical Research, 2002, 107, SOL 48-1-SOL 48-11.	3.3	23
124	Evolution of ozone and ozone-related species over Kiruna during the SOLVE/THESEO 2000 campaign retrieved from ground-based millimeter-wave and infrared observations. Journal of Geophysical Research, 2002, 107, SOL 51-1-SOL 51-12.	3.3	18
125	Ground-based FTIR observations of chlorine activation and ozone depletion inside the Arctic vortex during the winter of 1999/2000. Journal of Geophysical Research, 2002, 107, SOL 6-1.	3.3	23
126	Mountain polar stratospheric cloud measurements by Ground Based FTIR Solar Absorption Spectroscopy. Geophysical Research Letters, 2001, 28, 2189-2192.	1.5	14

THOMAS BLUMENSTOCK

#	Article	IF	CITATIONS
127	Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software. Applied Optics, 1999, 38, 3417.	2.1	233
128	MIPAS-Transall Observations of the Variability of CLONO2 during the Arctic Winter of 1994/95. Journal of Atmospheric Chemistry, 1998, 30, 81-101.	1.4	6
129	Sequestration of HNO3in polar stratospheric clouds and chlorine activation as monitored by ground-based Fourier transform infrared solar absorption measurements. Journal of Geophysical Research, 1998, 103, 22181-22200.	3.3	6
130	Application of a radiometric calibration method to lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody. Applied Optics, 1997, 36, 8168.	2.1	6
131	On the use of HF as a reference for the comparison of stratospheric observations and models. Journal of Geophysical Research, 1997, 102, 12901-12919.	3.3	35
132	Evidence for the removal of gaseous HNO3inside the arctic polar vortex in January 1992. Geophysical Research Letters, 1996, 23, 149-152.	1.5	8
133	Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra. Applied Optics, 1996, 35, 6203.	2.1	12
134	First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE. Geophysical Research Letters, 1994, 21, 1343-1346.	1.5	24
135	Column amounts of trace gases measured by ground-based FTIR spectroscopy during the EASOE campaign. , 1994, 2089, 532.		3
136	Column Amounts and Some Information on the Vertical Distribution of Trace Gases in the Late North Polar Winter 1990. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 272-276.	0.9	7
137	Column amounts of trace gases derived from groundâ€based measurements with MIPAS during CHEOPS III. Geophysical Research Letters, 1991, 18, 783-786.	1.5	27