
Jehad K Abu-Dahrieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Applied Catalysis B: Environmental, 2012, 127, 307-315.	20.2	114
2	Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal Environmental Science and Pollution Research, 2019, 26, 37228-37241.	5.3	90
3	Activity and deactivation studies for direct dimethyl ether synthesis using CuO–ZnO–Al2O3 with NH4ZSM-5, HZSM-5 or γ-Al2O3. Chemical Engineering Journal, 2012, 203, 201-211.	12.7	84
4	Upcycling brewer's spent grain waste into activated carbon and carbon nanotubes for energy and other applications via twoâ€stage activation. Journal of Chemical Technology and Biotechnology, 2020, 95, 183-195.	3.2	69
5	A bimetallic catalyst on a dual component support for low temperature total methane oxidation. Applied Catalysis B: Environmental, 2016, 187, 408-418.	20.2	68
6	A Facile Green Synthetic Route for the Preparation of Highly Active Î ³ -Al2O3 from Aluminum Foil Waste. Scientific Reports, 2017, 7, 3593.	3.3	47
7	Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 21546-21558.	7.1	47
8	Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction. Journal of Chemical Technology and Biotechnology, 2017, 92, 2952-2962.	3.2	43
9	Biogas reforming using renewable wind energy and induction heating. Catalysis Today, 2015, 242, 129-138.	4.4	40
10	Hydrogen production from CH4 dry reforming over Sc promoted Ni / MCM-41. International Journal of Hydrogen Energy, 2019, 44, 20770-20781.	7.1	40
11	Silver-Modified ÎAl ₂ O ₃ Catalyst for DME Production. Journal of Physical Chemistry C, 2017, 121, 25018-25032.	3.1	38
12	A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction. Molecular Catalysis, 2018, 455, 38-47.	2.0	36
13	Structure of the methanol synthesis catalyst determined by in situHERFD XAS and EXAFS. Catalysis Science and Technology, 2012, 2, 373-378.	4.1	33
14	Kinetic Investigation of Î⊶Al2O3 Catalyst for Dimethyl Ether Production. Catalysis Letters, 2018, 148, 1236-1245.	2.6	23
15	Characterisation of Robust Combustion Catalyst from Aluminium Foil Waste. ChemistrySelect, 2018, 3, 1545-1550.	1.5	23
16	Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts, 2018, 8, 229.	3.5	22
17	Self-cleaning perovskite type catalysts for the dry reforming of methane. Chinese Journal of Catalysis, 2014, 35, 1337-1346.	14.0	14
18	Pyrolysis Kinetic Modeling of a Poly(ethylene-co-vinyl acetate) Encapsulant Found in Waste Photovoltaic Modules. Industrial & Engineering Chemistry Research, 2021, 60, 13492-13504.	3.7	13

#	Article	IF	CITATIONS
19	Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts, 2021, 11, 1233.	3.5	8
20	Dry Reforming of Methane with Ni Supported on Mechanically Mixed Yttria-Zirconia Support. Catalysis Letters, 2022, 152, 3632-3641.	2.6	6
21	Effect of Pressure on Na0.5La0.5Ni0.3Al0.7O2.5 Perovskite Catalyst for Dry Reforming of CH4. Catalysts, 2020, 10, 379.	3.5	5