Jack Harrowfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098845/publications.pdf Version: 2024-02-01

		147726	206029
131	3,067	31	48
papers	citations	h-index	g-index
131	131	131	1947
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal ion encapsulation: cobalt cages derived from polyamines, formaldehyde, and nitromethane. Journal of the American Chemical Society, 1984, 106, 5478-5488.	6.6	210
2	Synthetic, Structural, and Spectroscopic Studies on Solids Containing Tris(dipicolinato) Rare Earth Anions and Transition or Main Group Metal Cations. Inorganic Chemistry, 1995, 34, 2068-2076.	1.9	174
3	Polyhapto-Aromatic Interactions in Lead(II) Coordination. Inorganic Chemistry, 2004, 43, 1810-1812.	1.9	89
4	Fluorescent sensors: A bright future for cages. Coordination Chemistry Reviews, 2021, 434, 213820.	9.5	86
5	Solid-State Luminescence and π-Stacking in Crystalline Uranyl Dipicolinates. European Journal of Inorganic Chemistry, 2006, 2006, 389-396.	1.0	84
6	Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalton Transactions, 2017, 46, 13660-13667.	1.6	84
7	Systematic Structural Coordination Chemistry of p-tert-Butyltetrathiacalix[4]arene: Further Complexes of Transition-Metal Ions. European Journal of Inorganic Chemistry, 2010, 2010, 2106-02126.	1.0	82
8	Uranyl–Organic Frameworks with Polycarboxylates: Unusual Effects of a Coordinating Solvent. Crystal Growth and Design, 2014, 14, 1314-1323.	1.4	73
9	Structural Variations in the Uranyl/4,4′-Biphenyldicarboxylate System. Rare Examples of 2D → 3D Polycatenated Uranyl–Organic Networks. Inorganic Chemistry, 2015, 54, 8093-8102.	1.9	73
10	Uranyl and Uranyl–3d Block Cation Complexes with 1,3-Adamantanedicarboxylate: Crystal Structures, Luminescence, and Magnetic Properties. Inorganic Chemistry, 2015, 54, 2838-2850.	1.9	63
11	Structural Consequences of 1,4-Cyclohexanedicarboxylate Cis/Trans Isomerism in Uranyl Ion Complexes: From Molecular Species to 2D and 3D Entangled Nets. Inorganic Chemistry, 2017, 56, 13464-13481.	1.9	54
12	Uranyl Ion Complexes with all- <i>cis</i> -1,3,5-Cyclohexanetricarboxylate: Unexpected Framework and Nanotubular Assemblies. Crystal Growth and Design, 2014, 14, 4214-4225.	1.4	52
13	Bonds and lone pairs in the flexible coordination sphere of lead(II). CrystEngComm, 2000, 2, 82.	1.3	51
14	Chiral one- to three-dimensional uranyl–organic assemblies from (1R,3S)-(+)-camphoric acid. CrystEngComm, 2014, 16, 2996.	1.3	45
15	Structural Studies of Rare Earth/Transition Metal Complex Ion Systems as a Basis for Understanding Their Thermal Decomposition to Mixed Oxides. European Journal of Inorganic Chemistry, 2005, 2005, 1127-1141.	1.0	44
16	The Use of Resorcinarene Cavitands in Metalâ€Based Catalysis. European Journal of Organic Chemistry, 2017, 2017, 6100-6113.	1.2	44
17	? Stacking and the co-ordinate bond: sometimes conflicting factors in molecular recognition, as revealed in the structures of metal picrates. Journal of the Chemical Society Dalton Transactions, 1996, , 3165.	1.1	43
18	Cation solvation in the solid state – temperature-dependent crystal structures in some metal perchlorates solvated by dimethylsulfoxide. Inorganica Chimica Acta, 2004, 357, 2365-2373.	1.2	42

#	Article	IF	CITATIONS
19	Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II). Inorganic Chemistry, 2016, 55, 6799-6816.	1.9	42
20	Supramolecular Influences on Metal Ion Coordination: Lead(II) under Eight-coordination. Supramolecular Chemistry, 2003, 15, 367-373.	1.5	41
21	Counterion-Induced Variations in the Dimensionality and Topology of Uranyl Pimelate Complexes. Crystal Growth and Design, 2016, 16, 2826-2835.	1.4	40
22	Ag ^I and Pb ^{II} as Additional Assembling Cations in Uranyl Coordination Polymers and Frameworks. Crystal Growth and Design, 2017, 17, 2116-2130.	1.4	39
23	Systematic Structural Coordination Chemistry of <i>pâ€ŧert</i> â€Butyltetrathiacalix[4]arene: Further Complexes of Lanthanide Metal Ions. European Journal of Inorganic Chemistry, 2010, 2010, 2127-2152.	1.0	38
24	Coordination Polymers and Cage-Containing Frameworks in Uranyl Ion Complexes with <i>rac</i> - and (1 <i>R</i> ,2 <i>R</i>)- <i>trans</i> -1,2-Cyclohexanedicarboxylates: Consequences of Chirality. Inorganic Chemistry, 2017, 56, 1455-1469.	1.9	37
25	Uranyl Ion Complexes with 1,1′-Biphenyl-2,2′,6,6′-tetracarboxylic Acid: Structural and Spectroscopic Studies of One- to Three-Dimensional Assemblies. Inorganic Chemistry, 2015, 54, 6296-6305.	1.9	36
26	Anchoring flexible uranyl dicarboxylate chains through stacking interactions of ancillary ligands on chiral U(<scp>vi</scp>) centres. CrystEngComm, 2016, 18, 3905-3918.	1.3	36
27	[Ni(cyclam)] ²⁺ and [Ni(<i>R</i> , <i>S</i> -Me ₆ cyclam)] ²⁺ as Linkers or Counterions In Uranyl–Organic Species with <i>cis</i> - and <i>trans</i> -1,2-Cyclohexanedicarboxylate Ligands. Crystal Growth and Design, 2018, 18, 5512-5520.	1.4	35
28	Complexation of Uranyl and Rare-Earth Ions by a Fluorinated Tetracarboxylate. Formation of a Layered Assembly and Three-Dimensional Frameworks. Crystal Growth and Design, 2013, 13, 3216-3224.	1.4	34
29	Counter-ion control of structure in uranyl ion complexes with 2,5-thiophenedicarboxylate. CrystEngComm, 2016, 18, 1550-1562.	1.3	34
30	Solvent effects in solvo-hydrothermal synthesis of uranyl ion complexes with 1,3-adamantanediacetate. CrystEngComm, 2015, 17, 4006-4018.	1.3	32
31	Variations on the Honeycomb Topology: From Triangular- and Square-Grooved Networks to Tubular Assemblies in Uranyl Tricarballylate Complexes. Crystal Growth and Design, 2017, 17, 963-966.	1.4	32
32	A New Form of Triple-Stranded Helicate Found in Uranyl Complexes of Aliphatic α,ï‰-Dicarboxylates. Inorganic Chemistry, 2015, 54, 10539-10541.	1.9	31
33	Uranyl Ion Complexes with Long-Chain Aliphatic α,ω-Dicarboxylates and 3d-Block Metal Counterions. Inorganic Chemistry, 2016, 55, 2133-2145.	1.9	30
34	Hirshfeld surface analysis of crystal packing in aza-aromatic picrate salts. CrystEngComm, 2014, 16, 4508-4538.	1.3	29
35	Tetrahedral and Cuboidal Clusters in Complexes of Uranyl and Alkali or Alkaline-Earth Metal Ions with <i>rac</i> - and (1 <i>R</i> ,2 <i>R</i>)- <i>trans</i> -1,2-Cyclohexanedicarboxylate. Crystal Growth and Design, 2017, 17, 2881-2892.	1.4	28
36	Counterion-Controlled Formation of an Octanuclear Uranyl Cage with <i>cis</i> -1,2-Cyclohexanedicarboxylate Ligands. Inorganic Chemistry, 2018, 57, 6283-6288.	1.9	28

#	Article	IF	CITATIONS
37	Structure-Directing Effects of Counterions in Uranyl Ion Complexes with Long-Chain Aliphatic α,Ĩ‰-Dicarboxylates: 1D to Polycatenated 3D Species. Inorganic Chemistry, 2019, 58, 567-580.	1.9	28
38	Sepulchrate: Four decades on. Polyhedron, 2015, 94, 1-51.	1.0	26
39	Calixarene Complexes of Anion-bridged Oligouranyl Species. Supramolecular Chemistry, 2004, 16, 603-609.	1.5	25
40	Synthesis, structure and luminescence properties of Cu(ii), Zn(ii) and Cd(ii) complexes with 4′-terphenylterpyridine. Dalton Transactions, 2012, 41, 10825.	1.6	25
41	Crown Ethers and Their Alkali Metal Ion Complexes as Assembler Groups in Uranyl–Organic Coordination Polymers with <i>cis</i> -1,3-, <i>cis</i> -1,2-, and <i>trans</i> -1,2-Cyclohexanedicarboxylates. Crystal Growth and Design, 2018, 18, 3167-3177.	1.4	25
42	Systematic Structural Coordination Chemistry of <i>p</i> â€ <i>tert</i> â€Butyltetrathiacalix[4]arene: Main Group Metal Complexes Other Than Those of Group 1. European Journal of Inorganic Chemistry, 2010, 2010, 2089-2105.	1.0	24
43	Photoswitchable transition metal complexes with azobenzene-functionalized imine-based ligands: structural and kinetic analysis. Dalton Transactions, 2018, 47, 14254-14262.	1.6	24
44	Fluorous interactions in complexes of lead(II) hexafluoroacetylacetonate. Inorganica Chimica Acta, 2005, 358, 4099-4103.	1.2	23
45	Tubelike Uranyl–Phenylenediacetate Assemblies from Screening of Ligand Isomers and Structure-Directing Counterions. Inorganic Chemistry, 2019, 58, 6550-6564.	1.9	23
46	The Enigma of Lead(II) Coordination - Some Comments. Helvetica Chimica Acta, 2005, 88, 2430-2432.	1.0	22
47	Tetrahydrofurantetracarboxylic Acid: An Isomerizable Framework-Forming Ligand in Homo- and Heterometallic Complexes with UO ₂ ²⁺ , Ag ⁺ , and Pb ²⁺ . Crystal Growth and Design, 2016, 16, 7083-7093.	1.4	22
48	Uranyl–Organic Coordination Polymers with <i>trans</i> -1,2-, <i>trans</i> -1,4-, and <i>cis</i> -1,4-Cyclohexanedicarboxylates: Effects of Bulky PPh ₄ ⁺ and PPh ₃ Me ⁺ Counterions. Crystal Growth and Design, 2018, 18, 2609-2619.	1.4	22
49	Chiral Discrete and Polymeric Uranyl Ion Complexes with (1 <i>R</i> ,3 <i>S</i>)-(+)-Camphorate Ligands: Counterion-Dependent Formation of a Hexanuclear Cage. Inorganic Chemistry, 2019, 58, 870-880.	1.9	22
50	Amphiphile Structures in the Solid State: Complex Cations with Lipophilic Substituents. European Journal of Inorganic Chemistry, 2005, 2005, 2384-2392.	1.0	21
51	Closed Uranyl–Dicarboxylate Oligomers: A Tetranuclear Metallatricycle with Uranyl Bridgeheads and 1,3-Adamantanediacetate Linkers. Inorganic Chemistry, 2018, 57, 7932-7939.	1.9	21
52	Two-dimensional assemblies in f-element ion (UO22+, Yb3+) complexes with two cyclohexyl-based polycarboxylates. Polyhedron, 2015, 98, 5-11.	1.0	20
53	Uranyl Ion Complexes with <i>trans</i> â€3â€(3â€Pyridyl)acrylic Acid Including a Uranyl–Copper(II) Heterometallic Framework. European Journal of Inorganic Chemistry, 2014, 2014, 4772-4778.	1.0	19
54	Calix[4]arene-fused phospholes. Dalton Transactions, 2017, 46, 9833-9845.	1.6	19

#	Article	IF	CITATIONS
55	The sulfonate group as a ligand: a fine balance between hydrogen bonding and metal ion coordination in uranyl ion complexes. Dalton Transactions, 2019, 48, 8756-8772.	1.6	19
56	A Strongly Luminescent Organic-Solvent-Soluble Salt of the Tris(dipicolinato)europium(III) Trianion. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1799-1802.	0.4	18
57	Inter- and intra-molecular pathways in polyamine synthesis from diamines â€. Dalton Transactions RSC, 2001, , 707-722.	2.3	18
58	Synthesis with coordinated ligands: biomolecule attachment to cage amines. Dalton Transactions RSC, 2002, , 906-913.	2.3	18
59	Cluster control in oligouranyl complexes of p-t-butylcalix[8]arene. Dalton Transactions, 2010, 39, 8313.	1.6	18
60	Uranyl Ion Complexes with Chiral Malic and Citramalic, and Prochiral Citric and Tricarballylic Acids: Influence of Coligands and Additional Metal Cations. European Journal of Inorganic Chemistry, 2018, 2018, 1016-1027.	1.0	18
61	Chiral Resolution of Hexaamine Cobalt(III) Cages: Substituent Effects on Chiral Discrimination. Australian Journal of Chemistry, 2003, 56, 1187.	0.5	17
62	Functionalized Aromatic Dicarboxylate Ligands in Uranyl–Organic Assemblies: The Cases of Carboxycinnamate and 1,2-/1,3-Phenylenedioxydiacetate. Inorganic Chemistry, 2020, 59, 2923-2936.	1.9	17
63	Structural self-sorting of pseudopeptide homo and heterodimeric disulfide cages in water: mechanistic insights and cation sensing. Journal of Materials Chemistry C, 2021, 9, 7607-7614.	2.7	17
64	Improved Synthesis and Conformational Analysis of anA,D-1,10-Phenanthroline-Bridged Calix[6]arene. European Journal of Organic Chemistry, 2005, 2005, 1348-1353.	1.2	16
65	Uranyl Ion-Containing Polymeric Assemblies with <i>cis</i> / <i>trans</i> Isomers of 1,2-, 1,3-, and 1,4-Cyclohexanedicarboxylates, Including a Helical Chain and a 6-Fold-Interpenetrated Framework. Crystal Growth and Design, 2020, 20, 262-273.	1.4	15
66	Structure-Directing Effects of Coordinating Solvents, Ammonium and Phosphonium Counterions in Uranyl Ion Complexes with 1,2-, 1,3-, and 1,4-Phenylenediacetates. Inorganic Chemistry, 2020, 59, 2503-2518.	1.9	15
67	Phosphines and other P(III)â€derivatives with Cavityâ€shaped Subunits: Valuable Ligands for Supramolecular Metal Catalysis, Metal Confinement and Subtle Steric Control. ChemCatChem, 2021, 13, 153-168.	1.8	15
68	Azetidines as intermediates in polyamine synthesis – structure and reactions of a quadridentate ligand incorporating an azetidine ring. Dalton Transactions RSC, 2002, , 1241-1243.	2.3	14
69	Chelation-controlled molecular morphology: aminal to imine rearrangements. Dalton Transactions, 2012, 41, 4335.	1.6	14
70	Synthesis, structure, and luminescence properties of arylpyridine-substituted terpyridine Zn(II) and Cd(II) complexes. Polyhedron, 2013, 52, 435-441.	1.0	14
71	Cavity Formation in Uranyl Ion Complexes with Kemp's Tricarboxylate: Grooved Diperiodic Nets and Polynuclear Cages. Inorganic Chemistry, 2021, 60, 1683-1697.	1.9	14
72	Cages on Surfaces: Thiol Functionalisation of CoIII Sarcophagine Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 263-278.	1.0	13

#	Article	IF	CITATIONS
73	Cracking Cavitands: Metalâ€Directed Scission of Phosphinylâ€&ubstituted Resorcinarenes. Chemistry - A European Journal, 2015, 21, 6678-6681.	1.7	12
74	Ni(2,2′:6′,2″-Terpyridine-4′-carboxylate) ₂ Zwitterions and Carboxylate Polyanions in Mixed-Ligand Uranyl Ion Complexes with a Wide Range of Topologies. Inorganic Chemistry, 2022, 61, 9725-9745.	1.9	12
75	Chirality in coordination polymers: homo- vs. hetero-chiral strand construction. Dalton Transactions RSC, 2001, , 3078-3083.	2.3	11
76	Lattice Forces in Heavy Metal Picrates: Structural Characterization of Lead and Mercury Species. Supramolecular Chemistry, 2005, 17, 609-615.	1.5	11
77	Complexation of Uranyl Ion with Sulfonates: One―to Threeâ€Dimensional Assemblies with 1,5―and 2,7â€Naphthalenedisulfonates. European Journal of Inorganic Chemistry, 2017, 2017, 979-987.	1.0	11
78	1,2-, 1,3-, and 1,4-Phenylenediacetate Complexes of the Uranyl Ion with Additional Metal Cations and/or Ancillary <i>N</i> -Donor Ligands: Confronting Ligand Geometrical Proclivities. Crystal Growth and Design, 2019, 19, 6611-6626.	1.4	11
79	Uranyl Tricarballylate Triperiodic and Nanotubular Species. Counterion Control of Nanotube Diameter. Inorganic Chemistry, 2020, 59, 6953-6962.	1.9	11
80	Contrasting Structure-Directing Effects in the Uranyl–Phthalate/Isophthalate Isomer Systems. Crystal Growth and Design, 2021, 21, 3000-3013.	1.4	11
81	Spin crossover in Co(ii) metallorods – replacing aliphatic tails by aromatic. Dalton Transactions, 2013, 42, 11507.	1.6	10
82	1,3-Adamantanedicarboxylate and 1,3-Adamantanediacetate as Uranyl Ion Linkers: Effect of Counterions, Solvents and Differences in Flexibility. European Journal of Inorganic Chemistry, 2019, 2019, 4440-4449.	1.0	10
83	Zero-, mono- and diperiodic uranyl ion complexes with the diphenate dianion: influences of transition metal ion coordination and differential U ^{VI} chelation. Dalton Transactions, 2020, 49, 817-828.	1.6	10
84	lsomerism in Benzenetricarboxylates: Variations in the Formation of Coordination Polymers with Uranyl Ion. Crystal Growth and Design, 2020, 20, 7368-7383.	1.4	10
85	Uranyl Ion Complexes of Polycarboxylates: Steps towards Isolated Photoactive Cavities. Chemistry, 2020, 2, 63-79.	0.9	10
86	Optimizing Photoluminescence Quantum Yields in Uranyl Dicarboxylate Complexes: Further Investigations of 2,5â€, 2,6†and 3,5â€Pyridinedicarboxylates and 2,3â€Pyrazinedicarboxylate. European Journal of Inorganic Chemistry, 2020, 2020, 4391-4400.	1.0	10
87	A comparison of the structural chemistry of scandium, yttrium, lanthanum and lutetium: A contribution to the group 3 debate. Coordination Chemistry Reviews, 2022, 455, 214366.	9.5	10
88	The crystalline α,ω-dicarboxylate metal complex with the longest aliphatic chain to date: uranyl 1,15-pentadecanedioate. Dalton Transactions, 2017, 46, 13677-13680.	1.6	9
89	Complexes of Uranyl Ions with Aromatic Di―and Tetracarboxylates Involving [Ni(bipy) <i>_n</i>] ²⁺ (<i>n</i> = 2, 3) Counterions. European Journal of Inorganic Chemistry, 2017, 2017, 5451-5460.	1.0	9
90	Favoring Framework Formation through Structure-Directing Effects in Uranyl Ion Complexes with 1,2,3,4-(Cyclo)butanetetracarboxylate Ligands. Crystal Growth and Design, 2019, 19, 4109-4120.	1.4	9

#	Article	IF	CITATIONS
91	2,5-Thiophenedicarboxylate: An Interpenetration-Inducing Ligand in Uranyl Chemistry. Inorganic Chemistry, 2021, 60, 9074-9083.	1.9	9
92	Copper(II) environments in some macrobicycle complexes at room and low temperatures: some novel binuclear chloro-bridged systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 353-362.	1.6	8
93	Structural Systematics for Lanthanide(III) Systems: Interactions of the Achiral Hexamminecobalt(III) Cation with Tris(dipicolinato)lanthanate(III) Anions. Australian Journal of Chemistry, 2017, 70, 485.	0.5	8
94	Uranyl ion complexes with 2,2′:6′,2′′-terpyridine-4′-carboxylate. Interpenetration of networks involv "expanded ligands― CrystEngComm, 2021, 23, 7305-7313.	ving 1.3	8
95	Quaterphenylterpyridine: Synthesis and Metal-Ion Complexation. European Journal of Inorganic Chemistry, 2013, 2013, 5862-5870.	1.0	7
96	A Calixareneâ€Đecorated Phosphole Oxide. European Journal of Organic Chemistry, 2016, 2016, 3103-3108.	1.2	7
97	Lead(ii): Lewis acid and occasional base, as illustrated by its complex with 1,5-naphthalenedisulfonate and 5-methyl-1,10-phenanthroline. Dalton Transactions, 2017, 46, 11533-11536.	1.6	7
98	Palladium complexes of N-heterocyclic carbenes displaying an unsymmetricalN-alkylfluorenyl/N′-aryl substitution pattern and their behaviour in Suzuki–Miyaura cross coupling. Dalton Transactions, 2019, 48, 14516-14529.	1.6	7
99	Dynamer and Metallodynamer Interconversion: An Alternative View to Metal Ion Complexation. Inorganic Chemistry, 2020, 59, 8552-8561.	1.9	7
100	Dipodal, Tripodal, and Discoidal Coordination Modes of Kemp's Triacid Anions. European Journal of Inorganic Chemistry, 2020, 2020, 749-756.	1.0	7
101	Supramolecular Interactions of Terpyridine-Derived Cores of Metallomesogen Precursors. International Journal of Molecular Sciences, 2013, 14, 20729-20743.	1.8	6
102	Generation and transformation of a hemi-iminal-based metal–organic Fe(<scp>ii</scp>) structure obtained via subcomponent self-assembly in water. Dalton Transactions, 2017, 46, 14826-14830.	1.6	6
103	Creating capsules with cubanes. Dalton Transactions, 2018, 47, 9575-9578.	1.6	6
104	Stepwise Introduction of Flexibility into Aromatic Dicarboxylates Forming Uranyl Ion Coordination Polymers: a Comparison of 2â€Carboxyphenylacetate and 1,2â€Phenylenediacetate. European Journal of Inorganic Chemistry, 2021, 2021, 2182-2192.	1.0	6
105	Plumbing the uncertainties of solvothermal synthesis involving uranyl ion carboxylate complexes. CrystEngComm, 2022, 24, 1475-1484.	1.3	6
106	Varying Structureâ€Directing Anions in Uranyl Ion Complexes with Ni(2,2′ : 6′,2′′â€terpyridineâ€4′ arboxylate) ₂ . European Journal of Inorgar	nic Chemi	stry, 2022, 2
107	Stereochemistry of cage amine complexes – probing the ligand conformational flexibility with hydrogen bonds. CrystEngComm, 2014, 16, 11058-11063.	1.3	4
108	Filling the equatorial garland of uranyl ion: its content and limitations. Journal of Inclusion	0.9	4

Phenomena and Macrocyclic Chemistry, 2021, 100, 89-98.

#	Article	IF	CITATIONS
109	Contrasting Networks and Entanglements in Uranyl Ion Complexes with Adipic and <i>trans</i> , <i>trans</i> -Muconic Acids. Inorganic Chemistry, 2022, 61, 2790-2803.	1.9	4
110	A simple regiospecific strategy for labelling hydrogen atoms in $\hat{l}\pm$ -amino acids. Chemical Communications, 2000, , 2431-2432.	2.2	3
111	Charge Localisation in Heavy Alkali Metal Ion Complexes of 4,4'-Biphenyldicarboxylate. Australian Journal of Chemistry, 2016, 69, 505.	0.5	3
112	Chiral discrimination in solid-state interactions of cobalt(iii)–polyamine complex cations with tris-(dipicolinato)lanthanate(iii) anions. CrystEngComm, 2017, 19, 2372-2379.	1.3	3
113	Three Different Modes of Association between Metal Cations in Heterometallic Uranyl–Co ^{III} and Uranyl–Mn ^{II} Species. European Journal of Inorganic Chemistry, 2018, 2018, 4465-4471.	1.0	3
114	Metallated Container Molecules: A Capsular Nickel Catalyst for Enhanced Butadiene Polymerisation. European Journal of Inorganic Chemistry, 2019, 2019, 4690-4694.	1.0	3
115	Influencing prototropy by metal ion coordination: supramolecular transformation of a dynamer into a Zn-based toroidal species. Journal of Materials Chemistry C, 2021, 9, 3065-3069.	2.7	3
116	Functionalised Terpyridines and Their Metal Complexes—Solid-State Interactions. Chemistry, 2021, 3, 199-227.	0.9	3
117	On the singularity of scandium. New Journal of Chemistry, 2022, 46, 4003-4013.	1.4	3
118	Lattice interactions of terpyridines and their derivatives – free terpyridines and their protonated forms. CrystEngComm, 2016, 18, 8059-8071.	1.3	2
119	Cavitand Scission by Transitionâ€Metal Centres – Cleaved Cavitand Chirality and Its Consequences. European Journal of Inorganic Chemistry, 2016, 2016, 497-502.	1.0	2
120	Protonation of a Spherical Macrotricyclic Tetramine: Water Inclusion, Allosteric Effect, and Cooperativity. ChemPlusChem, 2018, 83, 605-611.	1.3	2
121	Element 92 – Uranium. Australian Journal of Chemistry, 2019, 72, 329.	0.5	2
122	1D Mn(<scp>iii</scp>) coordination polymers exhibiting chiral symmetry breaking and weak ferromagnetism. Dalton Transactions, 2021, 50, 5428-5432.	1.6	2
123	A chiral uranyl-Kemp's tricarboxylate cubic framework: structure-directing effect of counterions with three-fold rotational symmetry. Dalton Transactions, 2021, 50, 11021-11024.	1.6	1
124	Chain, Network and Framework Formation in Uranyl Ion Complexes with 1,1′â€Biphenylâ€3,3′,4,4′â€Tetracarboxylate. European Journal of Inorganic Chemistry, 2021, 2021, 369	99 1 3907.	1
125	X-Ray Structural Studies of Small-Bite Ligands on Large Cations – Lanthanide(III) Ions and Dimethylphosphate. Australian Journal of Chemistry, 2020, 73, 539.	0.5	1
126	Uranyl Ion Coordination by Benzeneâ€1,2,3â€ŧricarboxylate: Building Chains and Networks from Binuclear Bricks. European Journal of Inorganic Chemistry, 2022, 2022, e202100917.	1.0	1

#	Article	IF	CITATIONS
127	Biologically relevant structural coordination chemistry of simple lanthanide ion complexes. Metal Ions in Biological Systems, 2003, 40, 105-59.	0.4	1
128	Lead(II) complexes with Kemp's tricarboxylate: Can lone pair activity be discerned?. Polyhedron, 2022, 218, 115760.	1.0	1
129	Multiple aspects of chirality in coordination polymers formed by the uranyl ion with (1R,3S)-(+)-camphorate ligands. Polyhedron, 2022, 218, 115764.	1.0	1
130	Crystal structure of tetra[(methoxycarbonyl)- methoxy]-p-tert-butylthiacalix[4]arene, C52H64O12S4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2000, 215, 493-495.	0.1	0
131	Hydrogen Bonding Directed Self-Assembly of a Binuclear Ag(I) Metallacycle into a 1D Supramolecular Polymer. Molecules, 2021, 26, 5719.	1.7	0