
Zonghui Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online, 2016, 18, 18.	2.9	531
2	Metabolic pathways of trichothecenes. Drug Metabolism Reviews, 2010, 42, 250-267.	3.6	161
3	Methods for the detection of reactive oxygen species. Analytical Methods, 2018, 10, 4625-4638.	2.7	155
4	Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo. Food and Chemical Toxicology, 2013, 59, 207-214.	3.6	86
5	Development of a high-performance liquid chromatography method for the simultaneous quantification of quinoxaline-2-carboxylic acid and methyl-3-quinoxaline-2-carboxylic acid in animal tissues. Journal of Chromatography A, 2007, 1146, 1-7.	3.7	84
6	Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions. Frontiers in Pharmacology, 2016, 7, 64.	3.5	80
7	Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli. PLoS ONE, 2015, 10, e0136450.	2.5	55
8	Subchronic oral toxicity study with cyadox in Wistar rats. Food and Chemical Toxicology, 2006, 44, 36-41.	3.6	51
9	Metabolism of cyadox in rat, chicken and pig liver microsomes and identification of metabolites by accurate mass measurements using electrospray ionization hybrid ion trap/time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 2026-2034.	1.5	48
10	Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-fenicols determination in shrimp and fish by liquid chromatography–electrospray ionisation tandem mass spectrometry. Food Chemistry, 2014, 150, 500-506.	8.2	44
11	Development of high performance liquid chromatographic methods for the determination of cyadox and its metabolites in plasma and tissues of chicken. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 874, 7-14.	2.3	43
12	Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites. Food and Chemical Toxicology, 2016, 93, 145-157.	3.6	40
13	Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the multi-residue detection of avermectins in edible animal tissues and milk. Food Chemistry, 2019, 286, 234-240.	8.2	37
14	Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox. Scientific Reports, 2017, 7, 41854.	3.3	36
15	Mechanism of adrenocortical toxicity induced by quinocetone and its bidesoxy-quinocetone metabolite in porcine adrenocortical cells inÂvitro. Food and Chemical Toxicology, 2015, 84, 115-124.	3.6	29
16	Mechanisms of Antibacterial Action of Quinoxaline 1,4-di-N-oxides against Clostridium perfringens and Brachyspira hyodysenteriae. Frontiers in Microbiology, 2016, 7, 1948.	3.5	23
17	Magnetic solidâ€phase extraction based on carbon nanotubes for the determination of polyether antibiotic and sâ€triazine drug residues in animal food with LC–MS/MS. Journal of Separation Science, 2017, 40, 2416-2430.	2.5	23
18	Development of HPLC Methods for the Determination of Cyadox and Its Main Metabolites in Goat Tissues. Analytical Sciences, 2005, 21, 1495-1499.	1.6	21

Zonghui Yuan

#	Article	IF	CITATIONS
19	In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi. BMC Veterinary Research, 2016, 12, 186.	1.9	21
20	Toxic metabolites, Sertoli cells and Y chromosome related genes are potentially linked to the reproductive toxicity induced by mequindox. Oncotarget, 2017, 8, 87512-87528.	1.8	21
21	Evaluation of the safety of primary metabolites of cyadox: Acute and sub-chronic toxicology studies and genotoxicity assessment. Regulatory Toxicology and Pharmacology, 2016, 74, 123-136.	2.7	16
22	The Evolution of Fluoroquinolone Resistance in Salmonella under Exposure to Sub-Inhibitory Concentration of Enrofloxacin. International Journal of Molecular Sciences, 2021, 22, 12218.	4.1	15
23	A two-year dietary carcinogenicity study of cyadox in Sprague-Dawley rats. Regulatory Toxicology and Pharmacology, 2017, 87, 9-22.	2.7	14
24	N–O Reduction and ROS-Mediated AKT/FOXO1 and AKT/P53 Pathways Are Involved in Growth Promotion and Cytotoxicity of Cyadox. Chemical Research in Toxicology, 2018, 31, 1219-1229.	3.3	13
25	Targeted analysis and determination of βâ€agonists, hormones, glucocorticoid and psychiatric drugs in feed by liquid chromatography with electrospray ionization tandem mass spectrometry. Journal of Separation Science, 2016, 39, 2584-2594.	2.5	12
26	Analysis of Major Components of Bacitracin, Colistin and Virginiamycin in Feed Using Matrix Solid-phase Dispersion Extraction by Liquid Chromatography-electrospray Ionization Tandem Mass Spectrometry. Journal of Chromatographic Science, 2018, 56, 285-291.	1.4	12
27	Simultaneous determination of seven gestagens in kidney fats by Ultra Performance Convergence Chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 988, 143-148.	2.3	11
28	Mequindox Induced Genotoxicity and Carcinogenicity in Mice. Frontiers in Pharmacology, 2018, 9, 361.	3.5	11
29	The Reproductive Toxicity of Mequindox in a Two-Generation Study in Wistar Rats. Frontiers in Pharmacology, 2018, 9, 870.	3.5	10
30	Genotoxic risk of quinocetone and its possible mechanism in in vitro studies. Toxicology Research, 2016, 5, 446-460.	2.1	9
31	Differentially expressed genes in response to cyadox in swine liver analyzed by DDRT-PCR. Research in Veterinary Science, 2018, 118, 72-78.	1.9	9
32	Mequindox induces apoptosis, DNA damage, and carcinogenicity in Wistar rats. Food and Chemical Toxicology, 2019, 127, 270-279.	3.6	8
33	Signaling pathways involved in the expression of SZNF and the target genes binding with SZNF related to cyadox. Biomedicine and Pharmacotherapy, 2018, 108, 1879-1893.	5.6	7
34	Molecular Characterization and Biological Function of a Novel LncRNA CRNG in Swine. Frontiers in Pharmacology, 2019, 10, 539.	3.5	7
35	Development of a Sensitive Monoclonal Antibody–Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Monensin in Edible Chicken Tissues. Food Analytical Methods, 2019, 12, 1479-1486.	2.6	6
36	Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse. Frontiers in Pharmacology, 2018, 9, 436.	3.5	5

Zonghui Yuan

#	Article	IF	CITATIONS
37	Cyadox regulates the transcription of different genes by activation of the PI3K signaling pathway in porcine primary hepatocytes . Journal of Cellular Biochemistry, 2019, 120, 7623-7634.	2.6	5
38	Pharmacokinetics and Metabolism of Cyadox and Its Main Metabolites in Beagle Dogs Following Oral, Intramuscular, and Intravenous Administration. Frontiers in Pharmacology, 2016, 7, 236.	3.5	4
39	A Convenient and Sensitive LC-MS/MS Method for Simultaneous Determination of Carbadox- and Olaquindox-Related Residues in Swine Muscle and Liver Tissues. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-9.	1.6	2
40	Disposition of cyadox in domesticated cats following oral, intramuscular, and intravenous administration. Journal of Veterinary Pharmacology and Therapeutics, 2020, 43, 97-107.	1.3	2
41	Transcriptional Profile of CYP3As and Functional Expression of CYP3A29 from Piglets. , 2009, , .		Ο