Ajay K Banga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098751/publications.pdf

Version: 2024-02-01

101543 133252 4,529 129 36 59 citations h-index g-index papers 131 131 131 2970 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Iontophoretic delivery of drugs: Fundamentals, developments and biomedical applications. Journal of Controlled Release, 1988, 7, 1-24.	9.9	208
2	Iontophoresis and electroporation: comparisons and contrasts. International Journal of Pharmaceutics, 1999, 179, 1-19.	5.2	182
3	Characterization of Solid Maltose Microneedles and their Use for Transdermal Delivery. Pharmaceutical Research, 2008, 25, 104-113.	3.5	180
4	In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. International Journal of Pharmaceutics, 2009, 368, 109-115.	5.2	171
5	Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 88-103.	4.3	141
6	Transdermal Delivery of Proteins. AAPS PharmSciTech, 2011, 12, 431-441.	3.3	130
7	Microporation applications for enhancing drug delivery. Expert Opinion on Drug Delivery, 2009, 6, 343-354.	5.0	123
8	Formation and Closure of Microchannels in Skin Following Microporation. Pharmaceutical Research, 2011, 28, 82-94.	3.5	110
9	Characterization of Microchannels Created by Metal Microneedles: Formation and Closure. AAPS Journal, 2011, 13, 473-481.	4.4	106
10	Intradermal and transdermal drug delivery using microneedles – Fabrication, performance evaluation and application to lymphatic delivery. Advanced Drug Delivery Reviews, 2020, 153, 195-215.	13.7	102
11	The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. Journal of Controlled Release, 2000, 66, 127-133.	9.9	97
12	Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. Journal of Pharmacy and Pharmacology, 2010, 60, 27-33.	2.4	84
13	Assessing the potential of skin electroporation for the delivery of protein- and gene-based drugs. Trends in Biotechnology, 1998, 16, 408-412.	9.3	83
14	Transdermal Delivery of Interferon Alpha-2B using Microporation and Iontophoresis in Hairless Rats. Pharmaceutical Research, 2007, 24, 1389-1395.	3.5	83
15	Hydrogel-based iontotherapeutic delivery devices for transdermal delivery of peptide/protein drugs. Pharmaceutical Research, 1993, 10, 697-702.	3.5	77
16	Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. International Journal of Pharmaceutics, 2012, 423, 289-296.	5,2	77
17	Delivery of Methotrexate and Characterization of Skin Treated by Fabricated PLGA Microneedles and Fractional Ablative Laser. Pharmaceutical Research, 2018, 35, 68.	3.5	73
18	Use of Poloxamer Polymers to Stabilize Recombinant Human Growth Hormone Against Various Processing Stresses. Pharmaceutical Development and Technology, 1997, 2, 143-149.	2.4	68

#	Article	IF	CITATIONS
19	Inhibition of crystallization in drug-in-adhesive-type transdermal patches. International Journal of Pharmaceutics, 2010, 394, 68-74.	5.2	59
20	Delivery of salmon calcitonin using a microneedle patch. International Journal of Pharmaceutics, 2012, 423, 257-263.	5.2	58
21	Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. Journal of Controlled Release, 2017, 268, 159-165.	9.9	58
22	Adapalene Microemulsion for Transfollicular Drug Delivery. Journal of Pharmaceutical Sciences, 2013, 102, 2622-2631.	3.3	54
23	Transdermal iontophoretic delivery of salmon calcitonin. International Journal of Pharmaceutics, 2000, 200, 107-113.	5.2	53
24	Microchannels created by sugar and metal microneedles: Characterization by microscopy, macromolecular flux and other techniques. Journal of Pharmaceutical Sciences, 2010, 99, 1931-1941.	3.3	52
25	Microneedles and their Applications. Recent Patents on Drug Delivery and Formulation, 2011, 5, 95-132.	2.1	51
26	Effects of chemical and physical enhancement techniques on transdermal delivery of 3-fluoroamphetamine hydrochloride. International Journal of Pharmaceutics, 2017, 528, 452-462.	5.2	50
27	Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Delivery and Translational Research, 2017, 7, 16-26.	5.8	49
28	Enhanced skin delivery of vismodegib by microneedle treatment. Drug Delivery and Translational Research, 2015, 5, 407-423.	5.8	47
29	Molecular charge mediated transport of a 13kD protein across microporated skin. International Journal of Pharmaceutics, 2009, 378, 93-100.	5.2	46
30	Peptide and protein transdermal drug delivery. Drug Discovery Today: Technologies, 2012, 9, e147-e154.	4.0	44
31	Modulated iontophoretic delivery of small and large molecules through microchannels. International Journal of Pharmaceutics, 2012, 434, 106-114.	5.2	43
32	Dermal, Subdermal, and Systemic Concentrations of Granisetron by Iontophoretic Delivery. Pharmaceutical Research, 2005, 22, 1313-1319.	3.5	42
33	Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. Journal of Drug Targeting, 2013, 21, 354-366.	4.4	41
34	Transdermal iontophoretic delivery of ketoprofen through human cadaver skin and in humans. Journal of Controlled Release, 1997, 44, 113-121.	9.9	38
35	Fabrication, characterization and application of sugar microneedles for transdermal drug delivery. Therapeutic Delivery, 2017, 8, 249-264.	2.2	38
36	Development of a Transdermal Delivery System for Tenofovir Alafenamide, a Prodrug of Tenofovir with Potent Antiviral Activity Against HIV and HBV. Pharmaceutics, 2019, 11, 173.	4.5	38

#	Article	IF	Citations
37	Response Surface Methodology to Investigate the Iontophoretic Delivery of Tacrine Hydrochloride. Pharmaceutical Research, 2004, 21, 2293-2299.	3.5	36
38	Aggregation of Proteins and its Prevention by Carbohydrate Excipients: Albumins and \hat{I}^3 -Globulin. Journal of Pharmacy and Pharmacology, 2011, 47, 103-107.	2.4	35
39	Electrically and Ultrasonically Enhanced Transdermal Delivery of Methotrexate. Pharmaceutics, 2018, 10, 117.	4.5	35
40	Formulation and evaluation of 4-benzylpiperidine drug-in-adhesive matrix type transdermal patch. International Journal of Pharmaceutics, 2018, 550, 71-78.	5.2	32
41	In vivo iontophoretic delivery and pharmacokinetics of salmon calcitonin. International Journal of Pharmaceutics, 2005, 297, 190-6.	5.2	30
42	Transdermal iontophoretic delivery of terbinafine hydrochloride: Quantitation of drug levels in stratum corneum and underlying skin. International Journal of Pharmaceutics, 2010, 388, 24-31.	5.2	30
43	Transdermal Iontophoretic Delivery of Hydrocortisone from Cyclodextrin Solutions. Journal of Pharmacy and Pharmacology, 2011, 50, 635-640.	2.4	30
44	Effects of Chemical and Physical Enhancement Techniques on Transdermal Delivery of Cyanocobalamin (Vitamin B12) In Vitro. Pharmaceutics, 2011, 3, 474-484.	4.5	30
45	Formulation and optimization of desogestrel transdermal contraceptive patch using crystallization studies. International Journal of Pharmaceutics, 2013, 441, 9-18.	5.2	30
46	Transdermal iontophoretic delivery and degradation of vasopressin across human cadaver skin. International Journal of Pharmaceutics, 1995, 116, 211-216.	5.2	29
47	Electrically enhanced transdermal delivery of a macromolecule. Journal of Pharmacy and Pharmacology, 2010, 54, 907-912.	2.4	28
48	Transdermal delivery of human growth hormone via laser-generated micropores. Drug Delivery and Translational Research, 2018, 8, 450-460.	5.8	28
49	Iontophoretic and Microneedle Mediated Transdermal Delivery of Glycopyrrolate. Pharmaceutics, 2014, 6, 663-671.	4.5	26
50	Intradermal and follicular delivery of adapalene liposomes. Drug Development and Industrial Pharmacy, 2016, 42, 871-879.	2.0	26
51	Characterization of in Vitro Transdermal Iontophoretic Delivery of Insulin. Drug Development and Industrial Pharmacy, 1993, 19, 2069-2087.	2.0	25
52	Transdermal delivery of a ~13 kDa protein—anin vivocomparison of physical enhancement methods. Journal of Drug Targeting, 2010, 18, 141-147.	4.4	25
53	Transcending the Skin Barrier to Deliver Peptides and Proteins Using Active Technologies. Critical Reviews in Therapeutic Drug Carrier Systems, 2012, 29, 265-298.	2.2	25
54	Factorial design approach to evaluate interactions between electrically assisted enhancement and skin stripping for delivery of tacrine. Journal of Controlled Release, 2005, 103, 113-121.	9.9	24

#	Article	IF	Citations
55	Induction and Inhibition of Crystallization in Drug-in-Adhesive-Type Transdermal Patches. Pharmaceutical Research, 2013, 30, 562-571.	3.5	23
56	Formulation Development and Characterization of Nanoemulsion-Based Formulation for Topical Delivery of Heparinoid. Journal of Pharmaceutical Sciences, 2018, 107, 2883-2890.	3.3	23
57	Fabrication and characterization of hyaluronic acid microneedles to enhance delivery of magnesium ascorbyl phosphate into skin. Biomedical Microdevices, 2019, 21, 104.	2.8	23
58	Transdermal Delivery of Iron Using Soluble Microneedles: Dermal Kinetics and Safety. Journal of Pharmaceutical Sciences, 2016, 105, 1196-1200.	3.3	22
59	Effect of Different Pressure-Sensitive Adhesives on Performance Parameters of Matrix-Type Transdermal Delivery Systems. Pharmaceutics, 2020, 12, 209.	4.5	22
60	Microneedle and iontophoresis mediated delivery of methotrexate into and across healthy and psoriatic skin. International Journal of Pharmaceutics, 2022, 618, 121693.	5.2	22
61	Transdermal delivery of methotrexate for pediatrics using silicon microneedles. Therapeutic Delivery, 2013, 4, 543-551.	2.2	21
62	Development and evaluation of a polyvinyl alcohol based topical gel. Journal of Drug Delivery Science and Technology, 2017, 39, 210-216.	3.0	21
63	Methods to simulate rubbing of topical formulation for in vitro skin permeation studies. International Journal of Pharmaceutics, 2017, 519, 22-33.	5.2	21
64	Modulated delivery of donepezil using a combination of skin microporation and iontophoresis. International Journal of Pharmaceutics, 2020, 589, 119853.	5.2	21
65	In Situ Gel Formation in Microporated Skin for Enhanced Topical Delivery of Niacinamide. Pharmaceutics, 2020, 12, 472.	4.5	21
66	Electrically modulated transdermal delivery of fentanyl. Pharmaceutical Research, 2002, 19, 440-444.	3.5	20
67	Optimization of lontophoretic Parameters for the Transdermal Delivery of Methotrexate. Drug Delivery, 2008, 15, 437-442.	5.7	20
68	In Vivo Iontophoretic Delivery of Salmon Calcitonin Across Microporated Skin. Journal of Pharmaceutical Sciences, 2012, 101, 2861-2869.	3.3	20
69	Non-Ablative Fractional Laser to Facilitate Transdermal Delivery. Journal of Pharmaceutical Sciences, 2016, 105, 3324-3332.	3.3	20
70	In vitro percutaneous absorption studies of cannabidiol using human skin: Exploring the effect of drug concentration, chemical enhancers, and essential oils. International Journal of Pharmaceutics, 2022, 616, 121540.	5.2	20
71	New Technologies to Allow Transdermal Delivery of Therapeutic Proteins and Small Water-Soluble Drugs. American Journal of Drug Delivery, 2006, 4, 221-230.	0.6	19
72	Response Surface Methodology to Optimize Novel Fast Disintegrating Tablets Using \hat{l}^2 Cyclodextrin as Diluent. AAPS PharmSciTech, 2010, 11, 1627-1635.	3.3	19

#	Article	IF	Citations
73	Iontophoresis mediated in vivo intradermal delivery of terbinafine hydrochloride. International Journal of Pharmaceutics, 2010, 393, 113-119.	5.2	19
74	Cosmetic devices based on active transdermal technologies. Therapeutic Delivery, 2015, 6, 1089-1099.	2.2	19
75	Clinical Applications of lontophoretic Devices in Rehabilitation Medicine. Critical Reviews in Physical and Rehabilitation Medicine, 1998, 10, 147-179.	0.1	18
76	Solenopsin A and analogs exhibit ceramide-like biological activity. Vascular Cell, 2015, 7, 5.	0.2	18
77	Iontophoretic in vivo transdermal delivery of beta-blockers in hairless rats and reduced skin irritation by liposomal formulation. Pharmaceutical Research, 2003, 20, 1496-1501.	3.5	17
78	Transdermal and intradermal iontophoretic delivery of dexamethasone sodium phosphate: quantification of the drug localized in skin. Journal of Drug Targeting, 2010, 18, 134-140.	4.4	17
79	Vehicle influence on permeation through intact and compromised skin. International Journal of Pharmaceutics, 2014, 472, 362-368.	5.2	17
80	Acyclovir skin depot characterization following <i>in vivo</i> iontophoretic delivery. Skin Research and Technology, 2011, 17, 234-244.	1.6	16
81	Qualitative and quantitative analysis of lateral diffusion of drugs in human skin. International Journal of Pharmaceutics, 2018, 544, 62-74.	5.2	16
82	Enhancement in the Transdermal and Localized Delivery of Honokiol Through Breast Tissue. AAPS PharmSciTech, 2018, 19, 3501-3511.	3.3	16
83	In vivo transdermal delivery of leuprolide using microneedles and iontophoresis. Current Pharmaceutical Biotechnology, 2013, 14, 180-93.	1.6	16
84	An update on the application of physical technologies to enhance intradermal and transdermal drug delivery. Therapeutic Delivery, 2012, 3, 339-355.	2.2	15
85	Effect of Modulated Alternating and Direct Current Iontophoresis on Transdermal Delivery of Lidocaine Hydrochloride. BioMed Research International, 2014, 2014, 1-6.	1.9	14
86	Effect of ablative laser on in vitro transungual delivery. International Journal of Pharmaceutics, 2018, 544, 402-414.	5.2	14
87	Transdermal delivery of breakthrough therapeutics for the management of treatment-resistant and post-partum depression. International Journal of Pharmaceutics, 2020, 591, 120007.	5.2	14
88	Microneedle Mediated Iontophoretic Delivery of Tofacitinib Citrate. Pharmaceutical Research, 2023, 40, 735-747.	3.5	14
89	Theme Section: Transdermal Delivery of Proteins. Pharmaceutical Research, 2007, 24, 1357-1359.	3.5	13
90	Development of Disposal Systems for Deactivation of Unused/Residual/Expired Medications. Pharmaceutical Research, 2016, 33, 110-124.	3.5	13

#	Article	IF	CITATIONS
91	Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route. Critical Reviews in Therapeutic Drug Carrier Systems, 2017, 34, 551-587.	2.2	13
92	In Vivo Transdermal Delivery of Leuprolide Using Microneedles and Iontophoresis. Current Pharmaceutical Biotechnology, 2013, 14, 180-193.	1.6	13
93	Formulation optimization of a drug in adhesive transdermal analgesic patch. Drug Development and Industrial Pharmacy, 2016, 42, 862-870.	2.0	12
94	Application of TZERO calibrated modulated temperature differential scanning calorimetry to characterize model protein formulations. International Journal of Pharmaceutics, 2006, 309, 146-156.	5.2	11
95	Design and Evaluation of a Poly(Lactide-co-Glycolide)-Based In Situ Film-Forming System for Topical Delivery of Trolamine Salicylate. Pharmaceutics, 2019, 11, 409.	4.5	11
96	Skin Delivery and Irritation Potential of Phenmetrazine as a Candidate Transdermal Formulation for Repurposed Indications. AAPS Journal, 2019, 21, 70.	4.4	11
97	Transdermal lontophoretic delivery of colchicine encapsulated in liposomes. Drug Delivery, 1996, 3, 245-250.	5.7	10
98	Enhancement of Transdermal Delivery of Heparin by Various Physical and Chemical Enhancement Techniques. Critical Reviews in Therapeutic Drug Carrier Systems, 2009, 26, 581-606.	2.2	10
99	Transdermal delivery of proteins using a combination of iontophoresis and microporation. Therapeutic Delivery, 2014, 5, 525-536.	2.2	10
100	Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Therapeutic Delivery, 2021, 12, 77-103.	2.2	10
101	Topical and transdermal delivery with diseased human skin: passive and iontophoretic delivery of hydrocortisone into psoriatic and eczematous skin. Drug Delivery and Translational Research, 2022, 12, 197-212.	5.8	10
102	Transdermal Delivery of Baclofen Using Iontophoresis and Microneedles. AAPS PharmSciTech, 2022, 23, 84.	3.3	10
103	Localized delivery of a lipophilic proteasome inhibitor into human skin for treatment of psoriasis. Journal of Drug Targeting, 2016, 24, 503-507.	4.4	9
104	Transdermal Delivery of Cimetidine Across Microneedle-Treated Skin: Effect of Extent of Drug Ionization on the Permeation. Journal of Pharmaceutical Sciences, 2017, 106, 1285-1292.	3.3	9
105	Evaluation of an activated carbon-based deactivation system for the disposal of highly abused opioid medications. Drug Development and Industrial Pharmacy, 2018, 44, 125-134.	2.0	9
106	Development and evaluation of a heparin gel for transdermal delivery via laser-generated micropores. Therapeutic Delivery, 2021, 12, 133-144.	2.2	9
107	Formulation Development for Transdermal Delivery of Raloxifene, a Chemoprophylactic Agent against Breast Cancer. Pharmaceutics, 2022, 14, 680.	4.5	9
108	Stability of a Transdermal Salmon Calcitonin Formulation. Drug Delivery, 2003, 10, 41-45.	5.7	8

#	Article	IF	CITATIONS
109	Evaluation of acyclovir cream and gel formulations for transdermal iontophoretic delivery. Therapeutic Delivery, 2012, 3, 327-338.	2.2	8
110	Iontophoretic Delivery of Acyclovir: Intradermal Drug Monitoring Using Microdialysis and Quantification by Skin Extraction. PDA Journal of Pharmaceutical Science and Technology, 2011, 65, 432-444.	0.5	7
111	Iontophoresis of a 13 kDa protein monitored by subcutaneous microdialysisin vivo. Bioanalysis, 2011, 3, 2419-2426.	1.5	7
112	Investigation of the Dermal Absorption and Irritation Potential of Sertaconazole Nitrate Anhydrous Gel. Pharmaceutics, 2016, 8, 21.	4. 5	7
113	Evaluation of an activated carbon disposal system for safe disposal of model prescription sedative medications. Scientific Reports, 2020, 10, 2968.	3.3	7
114	Transdermal Delivery of Peptides and Proteins. , 2011, , 69-86.		6
115	Transdermal formulation of 4-benzylpiperidine for cocaine-use disorder. Journal of Drug Delivery Science and Technology, 2018, 47, 299-308.	3.0	6
116	Pharmacokinetics of a weekly transdermal delivery system of tenofovir alafenamide in hairless rats. International Journal of Pharmaceutics, 2020, 582, 119342.	5.2	5
117	Formulation and evaluation of sublingual delivery of piroxicam using thermosensitive polymer with an inverted Franz diffusion cell. Journal of Pharmacy and Pharmacology, 2016, 68, 26-35.	2.4	4
118	Development and validation of an HPLC-UV method for analysis of methylphenidate hydrochloride and loxapine succinate in an activated carbon disposal system. Journal of Pharmaceutical Analysis, 2018, 8, 349-356.	5. 3	4
119	In Vitro Antioxidant, Anti-Inflammatory and Skin Permeation of Myrsine africana and Its Isolated Compound Myrsinoside B. Frontiers in Pharmacology, 2019, 10, 1410.	3.5	4
120	Role of Nanotechnology in Skin Delivery of Drugs. , 2016, , 1-13.		3
121	The pharmacokinetics of 3-fluoroamphetamine following delivery using clinically relevant routes of administration. Drug Delivery and Translational Research, 2020, 10, 271-281.	5.8	3
122	Transdermal Delivery of the Free Base of 3-Fluoroamphetamine: In Vitro Skin Permeation and Irritation Potential. AAPS PharmSciTech, 2020, 21, 109.	3.3	3
123	Foreword to Transdermal Delivery Mini Focus Issue. Therapeutic Delivery, 2012, 3, 293-294.	2.2	1
124	Transdermal and intradermal iontophoretic delivery of dexamethasone sodium phosphate: quantification of the drug localized in skin. Journal of Drug Targeting, 2009, 00, 090922082920054-7.	4.4	1
125	In Vivo Transdermal Delivery of Leuprolide Using Microneedles and Iontophoresis. Current Pharmaceutical Biotechnology, 2013, 14, 180-193.	1.6	0
126	Transdermal Delivery of Peptides and Proteins by Physical Methods., 2017,, 423-437.		0

Ajay K Banga

#	Article	IF	CITATIONS
127	Topical delivery of nordihydroguaretic acid for attenuating cutaneous damage caused by arsenicals. Journal of Drug Delivery Science and Technology, 2020, 58, 101773.	3.0	0
128	A novel technique to evaluate nail softening effects of different urea formulations. Pharmaceutical Development and Technology, 2021, 26, 403-411.	2.4	0
129	Impact of Different Mixing Methods on the Performance of Suspension-Based Transdermal Delivery Systems. AAPS PharmSciTech, 2021, 22, 150.	3.3	O