Stacey D Finley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/909875/publications.pdf Version: 2024-02-01

STACEY D FINLEY

#	Article	IF	CITATIONS
1	Elucidating tumor-stromal metabolic crosstalk in colorectal cancer through integration of constraint-based models and LC-MS metabolomics. Metabolic Engineering, 2022, 69, 175-187.	7.0	10
2	Exogenous Lactogenic Signaling Stimulates Beta Cell Replication In Vivo and In Vitro. Biomolecules, 2022, 12, 215.	4.0	4
3	Phosphatases are predicted to govern prolactin-mediated JAK–STAT signaling in pancreatic beta cells. Integrative Biology (United Kingdom), 2022, 14, 37-48.	1.3	1
4	Multiscale modeling of tumor adaption and invasion following antiâ€angiogenic therapy. Computational and Systems Oncology, 2022, 2, .	1.5	5
5	Mechanistic characterization of endothelial sprouting mediated by proâ€angiogenic signaling. Microcirculation, 2022, 29, e12744.	1.8	2
6	Dynamic Regulation of JAK-STAT Signaling Through the Prolactin Receptor Predicted by Computational Modeling. Cellular and Molecular Bioengineering, 2021, 14, 15-30.	2.1	10
7	Fund Black scientists. Cell, 2021, 184, 561-565.	28.9	107
8	Mechanistic insights into the heterogeneous response to antiâ€VEGF treatment in tumors. Computational and Systems Oncology, 2021, 1, e1013.	1.5	2
9	Quantitative modeling to understand cell signaling in the tumor microenvironment. Current Opinion in Systems Biology, 2021, 27, 100345.	2.6	9
10	Editorial Overview: Mathematical modeling: It's a matter of scale. Current Opinion in Systems Biology, 2021, 28, 100360.	2.6	0
11	A field guide to cultivating computational biology. PLoS Biology, 2021, 19, e3001419.	5.6	6
12	Challenges and opportunities in 2021. Nature Cancer, 2021, 2, 1278-1283.	13.2	1
13	Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity. Journal of Theoretical Biology, 2020, 489, 110125.	1.7	28
14	ERK Activation in CAR T Cells Is Amplified by CD28-Mediated Increase in CD3ζ Phosphorylation. IScience, 2020, 23, 101023.	4.1	28
15	ERK and Akt exhibit distinct signaling responses following stimulation by pro-angiogenic factors. Cell Communication and Signaling, 2020, 18, 114.	6.5	37
16	Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling. Journal of Clinical Medicine, 2020, 9, 1255.	2.4	14
17	Enhancing network activation in natural killer cells: predictions from in silico modeling. Integrative Biology (United Kingdom), 2020, 12, 109-121.	1.3	13
18	Modeling immune cell behavior across scales in cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1484.	6.6	24

STACEY D FINLEY

#	Article	IF	CITATIONS
19	An optimal control approach for enhancing natural killer cells' secretion of cytolytic molecules. APL Bioengineering, 2020, 4, 046107.	6.2	5
20	Multi-scale modeling of macrophage—T cell interactions within the tumor microenvironment. PLoS Computational Biology, 2020, 16, e1008519.	3.2	43
21	Multi-scale modeling of macrophage—T cell interactions within the tumor microenvironment. , 2020, 16, e1008519.		Ο
22	Multi-scale modeling of macrophage—T cell interactions within the tumor microenvironment. , 2020, 16, e1008519.		0
23	Multi-scale modeling of macrophage—T cell interactions within the tumor microenvironment. , 2020, 16, e1008519.		Ο
24	Multi-scale modeling of macrophage—T cell interactions within the tumor microenvironment. , 2020, 16, e1008519.		0
25	Integrative Approaches to Cancer Immunotherapy. Trends in Cancer, 2019, 5, 400-410.	7.4	64
26	Exploring the Extracellular Regulation of the Tumor Angiogenic Interaction Network Using a Systems Biology Model. Frontiers in Physiology, 2019, 10, 823.	2.8	10
27	Modeling cell signaling in heterogeneous cancer environments. Current Opinion in Systems Biology, 2019, 17, 15-23.	2.6	1
28	Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS Computational Biology, 2019, 15, e1007053.	3.2	27
29	The 2019 mathematical oncology roadmap. Physical Biology, 2019, 16, 041005.	1.8	147
30	Understanding the Dynamics of T-Cell Activation in Health and Disease Through the Lens of Computational Modeling. JCO Clinical Cancer Informatics, 2019, 3, 1-8.	2.1	27
31	Deciphering the Extracellular Inhibition of Proâ€angiogenic Signaling Using a Systems Biology Model. FASEB Journal, 2019, 33, .	0.5	Ο
32	The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment. Integrative Biology (United Kingdom), 2018, 10, 253-269.	1.3	14
33	Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Systems Biology, 2018, 12, 145.	3.0	50
34	<i>In silico</i> mouse study identifies tumour growth kinetics as biomarkers for the outcome of anti-angiogenic treatment. Journal of the Royal Society Interface, 2018, 15, 20180243.	3.4	7
35	Computational Model of Chimeric Antigen Receptors Explains Site-Specific Phosphorylation Kinetics. Biophysical Journal, 2018, 115, 1116-1129.	0.5	35
36	Monitoring Severity of Multiple Organ Dysfunction Syndrome. Pediatric Critical Care Medicine, 2017, 18, S24-S31.	0.5	13

STACEY D FINLEY

#	Article	IF	CITATIONS
37	Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Frontiers in Physiology, 2017, 8, 217.	2.8	47
38	Predictive model identifies strategies to enhance TSP1-mediated apoptosis signaling. Cell Communication and Signaling, 2017, 15, 53.	6.5	19
39	Mechanistic modeling quantifies the influence of tumor growth kinetics on the response to anti-angiogenic treatment. PLoS Computational Biology, 2017, 13, e1005874.	3.2	25
40	Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue. Npj Systems Biology and Applications, 2016, 2, .	3.0	32
41	A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse. Scientific Reports, 2016, 6, 37030.	3.3	17
42	Predictive Model of Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Autoregulation. Cellular and Molecular Bioengineering, 2016, 9, 351-367.	2.1	19
43	A cancer treatment based on synergy between anti-angiogenic and immune cell therapies. Journal of Theoretical Biology, 2016, 394, 197-211.	1.7	22
44	Pharmacokinetics of Antiâ€VEGF Agent Aflibercept in Cancer Predicted by Dataâ€Driven, Molecularâ€Detailed Model. CPT: Pharmacometrics and Systems Pharmacology, 2015, 4, 641-649.	2.5	19
45	Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discovery Today, 2015, 20, 187-197.	6.4	62
46	A systems biology view of blood vessel growth and remodelling. Journal of Cellular and Molecular Medicine, 2014, 18, 1491-1508.	3.6	139
47	Compartment Model Predicts VEGF Secretion and Investigates the Effects of VEGF Trap in Tumor-Bearing Mice. Frontiers in Oncology, 2013, 3, 196.	2.8	37
48	Effect of Tumor Microenvironment on Tumor VEGF During Anti-VEGF Treatment: Systems Biology Predictions. Journal of the National Cancer Institute, 2013, 105, 802-811.	6.3	92
49	Predicting the Effects of Anti-angiogenic Agents Targeting Specific VEGF Isoforms. AAPS Journal, 2012, 14, 500-509.	4.4	53
50	Timescale analysis of ruleâ€based biochemical reaction networks. Biotechnology Progress, 2012, 28, 33-44.	2.6	17
51	Inferring relevant control mechanisms for interleukinâ€12 signaling in naÃ⁻ve CD4 ⁺ T cells. Immunology and Cell Biology, 2011, 89, 100-110.	2.3	24
52	Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Systems Biology, 2011, 5, 193.	3.0	58
53	A Two-Compartment Model of VEGF Distribution in the Mouse. PLoS ONE, 2011, 6, e27514.	2.5	38
54	In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Systems Biology, 2010, 4, 7.	3.0	74

4

#	Article	IF	CITATIONS
55	Thermodynamic analysis of biodegradation pathways. Biotechnology and Bioengineering, 2009, 103, 532-541.	3.3	45
56	Computational framework for predictive biodegradation. Biotechnology and Bioengineering, 2009, 104, 1086-1097.	3.3	96