
Juntian Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098652/publications.pdf Version: 2024-02-01

ΙΠΝΤΙΑΝ ΧΗ

#	Article	lF	CITATIONS
1	Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2012, 2, 519-523.	18.8	307
2	The accumulation of microplastics in fish from an important fish farm and mariculture area, Haizhou Bay, China. Science of the Total Environment, 2019, 696, 133948.	8.0	170
3	Changes in morphological plasticity of Ulva prolifera under different environmental conditions: A laboratory experiment. Harmful Algae, 2016, 59, 51-58.	4.8	95
4	Future CO2-Induced Ocean Acidification Mediates the Physiological Performance of a Green Tide Alga. Plant Physiology, 2012, 160, 1762-1769.	4.8	91
5	Microplastics in bloom-forming macroalgae: Distribution, characteristics and impacts. Journal of Hazardous Materials, 2020, 397, 122752.	12.4	81
6	Physiological response of a golden tide alga (<i>Sargassum muticum</i>) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences, 2017, 14, 671-681.	3.3	72
7	Spatio-temporal features of microplastics pollution in macroalgae growing in an important mariculture area, China. Science of the Total Environment, 2020, 719, 137490.	8.0	72
8	Microplastics in specific tissues of wild sea urchins along the coastal areas of northern China. Science of the Total Environment, 2020, 728, 138660.	8.0	63
9	Effects of solar UV radiation on diurnal photosynthetic performance and growth of <i>Gracilaria lemaneiformis</i> (Rhodophyta). European Journal of Phycology, 2008, 43, 297-307.	2.0	60
10	Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera. Environmental and Experimental Botany, 2017, 135, 63-72.	4.2	58
11	Nitrogen availability modulates the effects of ocean acidification on biomass yield and food quality of a marine crop Pyropia yezoensis. Food Chemistry, 2019, 271, 623-629.	8.2	48
12	UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). Journal of Photochemistry and Photobiology B: Biology, 2010, 100, 117-122.	3.8	47
13	Global warming interacts with ocean acidification to alter PSII function and protection in the diatom Thalassiosira weissflogii. Environmental and Experimental Botany, 2018, 147, 95-103.	4.2	46
14	An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress. PLoS ONE, 2016, 11, e0169040.	2.5	43
15	Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea. Journal of Applied Phycology, 2008, 20, 681-686.	2.8	42
16	Physiological acclimation of the green tidal alga Ulva prolifera to a fast-changing environment. Marine Environmental Research, 2018, 137, 1-7.	2.5	41
17	A two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine bloom-forming diatom Skeletonema costatum. Bioresource Technology, 2019, 289, 121717.	9.6	41
18	Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga <i>Ulva linza</i> . Biogeosciences, 2018, 15, 3409-3420.	3.3	39

Juntian Xu

#	Article	IF	CITATIONS
19	Use of UVâ€A Energy for Photosynthesis in the Red Macroalga <i>Gracilaria lemaneiformis</i> . Photochemistry and Photobiology, 2010, 86, 580-585.	2.5	33
20	Rising CO2 levels alter the responses of the red macroalga Pyropia yezoensis under light stress. Aquaculture, 2019, 501, 325-330.	3.5	24
21	Elevated-CO2 and nutrient limitation synergistically reduce the growth and photosynthetic performances of a commercial macroalga Gracilariopsis lemaneiformis. Aquaculture, 2022, 550, 737878.	3.5	24
22	Diurnal pH fluctuations of seawater influence the responses of an economic red macroalga Gracilaria lemaneiformis to future CO2-induced seawater acidification. Aquaculture, 2017, 473, 383-388.	3.5	23
23	Growth and photosynthesis in seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae,) Tj ETQq1 1 0.7	784314 rgB 2.8	T /Qyerlock 1
24	Effects of increased CO2 and temperature on the physiological characteristics of the golden tide blooming macroalgae Sargassum horneri in the Yellow Sea, China. Marine Pollution Bulletin, 2019, 146, 639-644.	5.0	20
25	Comparative research on inorganic carbon acquisition by the macroalgae Ulva prolifera (Chlorophyta) and Pyropia yezoensis (Rhodophyta). Journal of Applied Phycology, 2016, 28, 491-497.	2.8	19
26	Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza. Harmful Algae, 2019, 85, 101698.	4.8	19
27	Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification. Environmental Science and Pollution Research, 2020, 27, 3202-3212.	5.3	18
28	Measurement of benthic photosynthesis and calcification in flowing-through seawater with stable carbonate chemistry. Limnology and Oceanography: Methods, 2012, 10, 555-559.	2.0	14
29	Differential photosynthetic responses of marine planktonic and benthic diatoms to ultraviolet radiation under various temperature regimes. Biogeosciences, 2017, 14, 5029-5037.	3.3	14
30	Future CO ₂ -induced seawater acidification mediates the physiological performance of a green alga <i>Ulva linza</i> in different photoperiods. PeerJ, 2019, 7, e7048.	2.0	14
31	Photosynthetic contribution of UV-A to carbon fixation by macroalgae. Phycologia, 2016, 55, 318-322.	1.4	13
32	Water depth-dependant photosynthetic and growth rates of Gracilaria lemaneiformis, with special reference to effects of solar UV radiation. Aquaculture, 2018, 484, 28-31.	3.5	12
33	Photosynthetic Performance of the Red Alga <i>Pyropia haitanensis</i> During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO ₂ Concentration. Photochemistry and Photobiology, 2015, 91, 1376-1381.	2.5	8
34	High copper and UVR synergistically reduce the photochemical activity in the marine diatom Skeletonema costatum. Journal of Photochemistry and Photobiology B: Biology, 2019, 192, 97-102.	3.8	8
35	Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization. ICES Journal of Marine Science, 2019, 76, 1850-1859.	2.5	8
36	Response of the red algae Pyropia yezoensis grown at different light intensities to CO2-induced seawater acidification at different life cycle stages. Algal Research, 2020, 49, 101950.	4.6	8

Juntian Xu

#	Article	IF	CITATIONS
37	Elevated CO2 influences competition for growth, photosynthetic performance and biochemical composition in Neopyropia yezoensis and Ulva prolifera. Algal Research, 2021, 56, 102313.	4.6	8
38	Physiological acclimation of Ulva prolifera to seasonal environmental factors drives green tides in the Yellow Sea. Marine Environmental Research, 2022, 179, 105695.	2.5	8
39	Effect of nitrogen and phosphorus on the growth and amino acid contents of <i>Porphyra yezoensis</i> . Aquaculture Research, 2017, 48, 2798-2802.	1.8	7
40	Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress. ICES Journal of Marine Science, 0, , .	2.5	7
41	High CO2 increases lipid and polyunsaturated fatty acid productivity of the marine diatom Skeletonema costatum in a two-stage model. Journal of Applied Phycology, 2022, 34, 43-50.	2.8	7
42	Solar UV radiation exacerbates photoinhibition of a diatom by antifouling agents Irgarol 1051 and diuron. Journal of Applied Phycology, 2020, 32, 1243-1251.	2.8	6
43	Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Photochemistry and Photobiology, 2020, 96, 1074-1082.	2.5	6
44	High salinity and UVR synergistically reduce the photosynthetic performance of an intertidal benthic diatom. Marine Environmental Research, 2017, 130, 258-263.	2.5	5
45	Effects of periodical dehydration on biomass yield and biochemical composition of the edible red alga Pyropia yezoensis grown at different salinities. Algal Research, 2021, 56, 102315.	4.6	5
46	Thermal fluctuations and nitrogen enrichment synergistically accelerate biomass yield of Pyropia haitanensis. Aquatic Botany, 2022, 179, 103501.	1.6	5
47	Combined effects of ocean acidification and nutrient levels on the photosynthetic performance of <i>Thalassiosira</i> (<i>Conticribra</i>) <i>weissflogii</i> (Bacillariophyta). Phycologia, 2018, 57, 121-129.	1.4	4
48	Different Photosynthetic Responses of <i>Pyropia yezoensis</i> to Ultraviolet Radiation Under Changing Temperature and Photosynthetic Active Radiation Regimes. Photochemistry and Photobiology, 2019, 95, 1213-1218.	2.5	4
49	Differential Photosynthetic Response of a Green Tide Alga <i>Ulva linza</i> to Ultraviolet Radiation, Under Short―and Longâ€ŧerm Ocean Acidification Regimes. Photochemistry and Photobiology, 2019, 95, 990-998.	2.5	4
50	Ocean acidification exacerbates copper toxicity in both juvenile and adult stages of the green tide alga Ulva linza. Marine Environmental Research, 2021, 170, 105447.	2.5	4
51	Stimulatory and inhibitory effects of phenanthrene on physiological performance of Chlorella vulgaris and Skeletonema costatum. Scientific Reports, 2022, 12, 5194.	3.3	4