Azadeh Kermanshahi-pour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098551/publications.pdf

Version: 2024-02-01

40 papers

1,502 citations

331670 21 h-index 315739 38 g-index

43 all docs 43 docs citations

43 times ranked

1947 citing authors

#	Article	IF	CITATIONS
1	Life cycle assessment and techno-economic analysis of a novel closed loop corn ethanol biorefinery. Sustainable Production and Consumption, 2022, 30, 359-376.	11.0	18
2	Transformation under pressure: Discovery of a novel crystalline form of anthelmintic drug Praziquantel using high-pressure supercritical carbon dioxide. International Journal of Pharmaceutics, 2022, 619, 121723.	5. 2	7
3	Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Marine Drugs, 2022, 20, 306.	4.6	24
4	Ternary Phase Diagram Development and Production of Niclosamide-Urea Co-Crystal by Spray Drying. Journal of Pharmaceutical Sciences, 2021, 110, 2063-2073.	3.3	6
5	Conversion of Lignocellulosic Biomass to Reducing Sugars in High Pressure and Supercritical Fluids: Greener Alternative for Biorefining of Renewables. Advanced Sustainable Systems, 2021, 5, 2000275.	5.3	7
6	Development of remediation technologies for organic contaminants informed by QSAR/QSPR models. Environmental Advances, 2021, 5, 100112.	4.8	9
7	Co-culturing of native bacteria from drinking water treatment plant with known degraders to accelerate microcystin-LR removal using biofilter. Chemical Engineering Journal, 2020, 383, 123090.	12.7	13
8	Physical and biological removal of Microcystin-LR and other water contaminants in a biofilter using Manganese Dioxide coated sand and Graphene sand composites. Science of the Total Environment, 2020, 703, 135052.	8.0	25
9	Supercritical Carbon Dioxide for Pharmaceutical Co-Crystal Production. Crystal Growth and Design, 2020, 20, 6226-6244.	3.0	26
10	A novel process for isolation and purification of polyunsaturated fatty acids from a thraustochytrid. Algal Research, 2020, 46, 101806.	4.6	3
11	Microalgae cultivation in thin stillage anaerobic digestate for nutrient recovery and bioproduct production. Algal Research, 2020, 47, 101867.	4.6	47
12	Microalgae disruption techniques for product recovery: influence of cell wall composition. Journal of Applied Phycology, 2019, 31, 61-88.	2.8	124
13	Dispersed air flotation of Chlorella saccharophila and subsequent extraction of lipids – Effect of supercritical CO2 extraction parameters and surfactant pretreatment. Biomass and Bioenergy, 2019, 127, 105297.	5.7	16
14	Data set of green extraction of valuable chemicals from lignocellulosic biomass using microwave method. Data in Brief, 2019, 26, 104347.	1.0	7
15	Lipid production in Rhodosporidium toruloides using C-6 and C-5 wood hydrolysate: A comparative study. Biomass and Bioenergy, 2019, 130, 105355.	5.7	34
16	Agro-industrial residues as a unique support in a sand filter to enhance the bioactivity to remove microcystin-Leucine aRginine and organics. Science of the Total Environment, 2019, 670, 971-981.	8.0	22
17	Simple Technoeconomic Approach to Chlortetracycline Removal from Wastewater Treatment Plant. Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23, .	2.0	1
18	Potential of biological approaches for cyanotoxin removal from drinking water: A review. Ecotoxicology and Environmental Safety, 2019, 172, 488-503.	6.0	34

#	Article	IF	Citations
19	Dataset of breakthrough time for various modified sand materials using Rhodamine-B as an adsorbate. Data in Brief, 2019, 27, 104751.	1.0	O
20	Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio. Renewable Energy, 2019, 135, 975-983.	8.9	21
21	Novel fluidized-bed biofilm reactor for concomitant removal of microcystin-LR and organics. Chemical Engineering Journal, 2019, 359, 99-111.	12.7	19
22	Challenges in lipid production from lignocellulosic biomass using <i>Rhodosporidium</i> sp.; A look at the role of lignocellulosic inhibitors. Biofuels, Bioproducts and Biorefining, 2019, 13, 740-759.	3.7	32
23	Fabrication of nanobiocatalyst using encapsulated laccase onto chitosan-nanobiochar composite. International Journal of Biological Macromolecules, 2019, 124, 530-536.	7.5	44
24	Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding. International Journal of Biological Macromolecules, 2018, 115, 563-571.	7. 5	64
25	Biotransformation of carbamazepine by laccase-mediator system: Kinetics, by-products and toxicity assessment. Process Biochemistry, 2018, 67, 147-154.	3.7	52
26	Improvement of culture conditions for cell biomass and fatty acid production by marine thraustochytrid F24-2. Journal of Applied Phycology, 2018, 30, 329-339.	2.8	8
27	Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution, 2018, 234, 190-213.	7.5	179
28	Biodegradation of microcystin-LR using acclimatized bacteria isolated from different units of the drinking water treatment plant. Environmental Pollution, 2018, 242, 407-416.	7. 5	31
29	Anaerobic digestion of thin stillage of corn ethanol plant in a novel anaerobic baffled reactor. Waste Management, 2018, 78, 541-552.	7.4	25
30	Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment—How far have we come?. Journal of Environmental Chemical Engineering, 2018, 6, 5369-5388.	6.7	25
31	Extraction of anthocyanins from haskap berry pulp using supercritical carbon dioxide: Influence of co-solvent composition and pretreatment. LWT - Food Science and Technology, 2018, 98, 237-244.	5.2	40
32	Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Science of the Total Environment, 2017, 584-585, 393-401.	8.0	127
33	A novel process for preparation of fatty acid oil mixture in solid form. Food Chemistry, 2017, 229, 50-56.	8.2	3
34	Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. Bioresource Technology, 2014, 173, 415-421.	9.6	42
35	Biodegradation kinetics of dibenzoate plasticizers and their metabolites. Biochemical Engineering Journal, 2013, 70, 35-45.	3.6	11
36	Derivation and synthesis of renewable surfactants. Chemical Society Reviews, 2012, 41, 1499-1518.	38.1	237

#	Article	IF	CITATIONS
37	Metabolites from the biodegradation of 1,6â€hexanediol dibenzoate, a potential green plasticizer, by <i>Rhodococcus rhodochrous</i> . Journal of Mass Spectrometry, 2009, 44, 662-671.	1.6	21
38	Mechanisms of biodegradation of dibenzoate plasticizers. Chemosphere, 2009, 77, 258-263.	8.2	27
39	Kinetic modeling of the biodegradation of the aqueous p-xylene in the immobilized soil bioreactor. Biochemical Engineering Journal, 2006, 27, 204-211.	3.6	16
40	Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor. Water Research, 2005, 39, 3704-3714.	11.3	52