
Jessica L Teeling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098361/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathologica, 2022, 143, 55-73.	3.9	15
2	Inflammation in dementia with Lewy bodies. Neurobiology of Disease, 2022, 168, 105698.	2.1	26
3	003†Systemic inflammation, erythrocyte fragility and multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A15.1-A15.	0.9	0
4	Progress in developing rodent models of age-related macular degeneration (AMD). Experimental Eye Research, 2021, 203, 108404.	1.2	24
5	Research priorities for neuroimmunology: identifying the key research questions to be addressed by 2030. Wellcome Open Research, 2021, 6, 194.	0.9	5
6	Systemic Inflammation Accelerates Changes in Microglial and Synaptic Markers in an Experimental Model of Chronic Neurodegeneration. Frontiers in Neuroscience, 2021, 15, 760721.	1.4	10
7	Peripheral immunophenotype in dementia with Lewy bodies and Alzheimer's disease: an observational clinical study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1219-1226.	0.9	17
8	Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis Induces Bone Loss-Correlated Alzheimer's Disease-Like Pathologies in Middle-Aged Mice. Journal of Alzheimer's Disease, 2020, 78, 61-74.	1.2	15
9	Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin. Brain Communications, 2020, 2, fcz053.	1.5	39
10	Porphyromonas gingivalis Infection Induces Amyloid-β Accumulation in Monocytes/Macrophages. Journal of Alzheimer's Disease, 2019, 72, 479-494.	1.2	67
11	Ageing and amyloidosis underlie the molecular and pathological alterations of tau in a mouse model of familial Alzheimer's disease. Scientific Reports, 2019, 9, 15758.	1.6	27
12	A lasered mouse model of retinal degeneration displays progressive outer retinal pathology providing insights into early geographic atrophy. Scientific Reports, 2019, 9, 7475.	1.6	17
13	Bacterial flagellin promotes viral entry via an NF-kB and Toll Like Receptor 5 dependent pathway. Scientific Reports, 2019, 9, 7903.	1.6	16
14	The long-lived Octodon degus as a rodent drug discovery model for Alzheimer's and other age-related diseases. , 2018, 188, 36-44.		21
15	Antibody Engineering for Optimized Immunotherapy in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 254.	1.4	17
16	Peripheral inflammatory cytokines and immune balance in Generalised Anxiety Disorder: Case-controlled study. Brain, Behavior, and Immunity, 2017, 62, 212-218.	2.0	132
17	STING Activation Reverses Lymphoma-Mediated Resistance to Antibody Immunotherapy. Cancer Research, 2017, 77, 3619-3631.	0.4	69
18	Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain, Behavior, and Immunity, 2017, 65, 350-361.	2.0	165

JESSICA L TEELING

#	Article	IF	CITATIONS
19	Immune to Brain Communication in Health, Age and Disease: Implications for Understanding Age-Related Neurodegeneration. , 2017, , 125-139.		2
20	[ECâ€02–03]: MURINE MODELS OF SYSTEMIC INFLAMMATION AND DEMENTIA: HOW ARE THEY CONNECTED? Alzheimer's and Dementia, 2017, 13, P547.	?. 0.4	1
21	The ME7 prion model of neurodegeneration as a tool to understand and target neuroinflammation in Alzheimer's disease. Drug Discovery Today: Disease Models, 2017, 25-26, 45-52.	1.2	4
22	Targeting innate immunity for neurodegenerative disorders of the central nervous system. Journal of Neurochemistry, 2016, 138, 653-693.	2.1	106
23	Periodontitis and Cognitive Decline in Alzheimer's Disease. PLoS ONE, 2016, 11, e0151081.	1.1	289
24	Low-grade inflammation, diet composition and health: current research evidence and its translation. British Journal of Nutrition, 2015, 114, 999-1012.	1.2	600
25	Etanercept in Alzheimer disease. Neurology, 2015, 84, 2161-2168.	1.5	203
26	Comparing the efficacy and neuroinflammatory potential of three anti-abeta antibodies. Acta Neuropathologica, 2015, 130, 699-711.	3.9	33
27	New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer's Disease. Frontiers in Neuroscience, 2014, 8, 235.	1.4	116
28	Fcγ Receptor Upregulation Is Associated With Immune Complex Inflammation in the Mouse Retina and Early Age-Related Macular Degeneration. , 2014, 55, 247.		38
29	Developing novel bloodâ€based biomarkers for Alzheimer's disease. Alzheimer's and Dementia, 2014, 10, 109-114.	0.4	138
30	Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Seminars in Immunopathology, 2013, 35, 601-612.	2.8	447
31	The Role of Inflammatory Mediators in Immune-to-Brain Communication during Health and Disease. Mediators of Inflammation, 2013, 2013, 1-3.	1.4	7
32	Intracerebral immune complex formation induces inflammation in the brain that depends on Fc receptor interaction. Acta Neuropathologica, 2012, 124, 479-490.	3.9	38
33	The intrathecal CD163â€haptoglobin–hemoglobin scavenging system in subarachnoid hemorrhage. Journal of Neurochemistry, 2012, 121, 785-792.	2.1	98
34	Age related changes in microglial phenotype vary between CNS regions: Grey versus white matter differences. Brain, Behavior, and Immunity, 2012, 26, 754-765.	2.0	194
35	Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. Journal of Neuroinflammation, 2012, 9, 146.	3.1	141
36	Systemic Inflammation Modulates Fc Receptor Expression on Microglia during Chronic Neurodegeneration. Journal of Immunology, 2011, 186, 7215-7224.	0.4	109

JESSICA L TEELING

#	Article	IF	CITATIONS
37	Reply to Letter re: "The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1.―by Teeling et al Brain, Behavior, and Immunity, 2011, 25, 586.	2.0	0
38	Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring. BMC Biology, 2011, 9, 49.	1.7	75
39	Phosphorylation of RIG-I by Casein Kinase II Inhibits Its Antiviral Response. Journal of Virology, 2011, 85, 1036-1047.	1.5	95
40	The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1. Brain, Behavior, and Immunity, 2010, 24, 409-419.	2.0	128
41	Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: Underlying mechanisms. Neuroscience, 2009, 158, 1062-1073.	1.1	216
42	CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. European Journal of Immunology, 2008, 38, 2263-2273.	1.6	102
43	Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: A prospective study. Brain, Behavior, and Immunity, 2008, 22, 399-407.	2.0	60
44	IL-8 as Antibody Therapeutic Target in Inflammatory Diseases: Reduction of Clinical Activity in Palmoplantar Pustulosis. Journal of Immunology, 2008, 181, 669-679.	0.4	145
45	The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain, Behavior, and Immunity, 2007, 21, 490-502.	2.0	261
46	Sub-pyrogenic systemic inflammation impacts on brain and behavior, independent of cytokines. Brain, Behavior, and Immunity, 2007, 21, 836-850.	2.0	129
47	The Biological Activity of Human CD20 Monoclonal Antibodies Is Linked to Unique Epitopes on CD20. Journal of Immunology, 2006, 177, 362-371.	0.4	579
48	A novel human CD32 mAb blocks experimental immune haemolytic anaemia in FcgammaRIIA transgenic mice. British Journal of Haematology, 2005, 130, 130-137.	1.2	20
49	Monomeric IgG in Intravenous Ig Preparations Is a Functional Antagonist of FcγRII and FcγRIIIb. Journal of Immunology, 2004, 173, 332-339.	0.4	58
50	Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood, 2004, 104, 1793-1800.	0.6	589
51	CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Research, 2003, 63, 5480-9.	0.4	168
52	History, biological mechanisms of action and clinical indications of intravenous immunoglobulin (IVIG) preparations. Reviews in Medical Microbiology, 2002, 13, 91-100.	0.4	1
53	Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of the effect. Blood, 2001, 98, 3136-3142.	0.6	82
54	Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood, 2001, 98, 1095-1099.	0.6	176

#	Article	IF	CITATIONS
55	Intravenous immunoglobulin preparations induce mild activation of neutrophils in vivo via triggering of macrophages - studies in a rat model. British Journal of Haematology, 2001, 112, 1031-1040.	1.2	18
56	Vasoactive side effects of intravenous immunoglobulin preparations in a rat model and their treatment with recombinant platelet-activating factor acetylhydrolase. Blood, 2000, 95, 1856-1861.	0.6	67