MaÅ,gorzata WiÅ>niewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9098000/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of surface structure, electrokinetic and stability properties of highly dispersed Ho2O3–Yb2O3/SiO2 nanocomposites. Applied Nanoscience (Switzerland), 2022, 12, 553-564.	1.6	1
2	Adsorption, viscosity and thermal behaviour of nanosized proteins with different internal stability immobilised on the surface of mesoporous activated biocarbon obtained from the horsetail herb precursor. Applied Nanoscience (Switzerland), 2022, 12, 1323-1336.	1.6	5
3	C.I. Basic Red 46 Removal from Sewage by Carbon and Silica Based Composite: Equilibrium, Kinetic and Electrokinetic Studies. Molecules, 2022, 27, 1043.	1.7	8
4	Interaction mechanism of heavy metal ions with the nanostructured zeolites surface – Adsorption, electrokinetic and XPS studies. Journal of Molecular Liquids, 2022, 357, 119144.	2.3	29
5	Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems – A review. Advances in Colloid and Interface Science, 2022, 305, 102687.	7.0	47
6	Modification of Surface Properties of Colloidal Suspensions of NixOy-SiO2 Mixed Oxides with Different Ni Contents by the Adsorption Layers of Poly(Vinyl Alcohol). Journal of Cluster Science, 2021, 32, 1213-1221.	1.7	1
7	Simultaneous Removal of Pb2+ and Zn2+ Heavy Metals Using Fly Ash Na-X Zeolite and its Carbon Na-X(C) Composite. Materials, 2021, 14, 2832.	1.3	30
8	Carbon-Silica Composite as Adsorbent for Removal of Hazardous C.I. Basic Yellow 2 and C.I. Basic Blue 3 Dyes. Materials, 2021, 14, 3245.	1.3	13
9	Comparison of Physicochemical Properties of Fly Ash Precursor, Na-P1(C) Zeolite–Carbon Composite and Na-P1 Zeolite—Adsorption Affinity to Divalent Pb and Zn Cations. Materials, 2021, 14, 3018.	1.3	13
10	Simultaneous adsorption of Cu(II) ions and poly(acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements. Journal of Hazardous Materials, 2021, 412, 125138.	6.5	22
11	Influence of surfactants with different ionic character on the structure of poly(acrylic acid) adsorption layer on the activated biocarbons surface – electrokinetic and stability studies. Journal of Molecular Liquids, 2021, 332, 115872.	2.3	8
12	Comparison of lead(II) ions accumulation and bioavailability on the montmorillonite and kaolinite surfaces in the presence of polyacrylamide soil flocculant. Chemosphere, 2021, 276, 130088.	4.2	17
13	Simultaneous removal of toxic Pb(II) ions, poly(acrylic acid) and Triton X-100 from their mixed solution using engineered biochars obtained from horsetail herb precursor – Impact of post-activation treatment. Separation and Purification Technology, 2021, 276, 119297.	3.9	21
14	Polyacrylamide Soil Conditioners: The Impact on Nanostructured Clay Minerals' Aggregation and Heavy Metals' Circulation in the Soil Environment. Springer Proceedings in Physics, 2021, , 111-127.	0.1	3
15	Anionic polyacrylamide as a substance strengthening the Pb(II) immobilization on the kaolinite surface. International Journal of Environmental Science and Technology, 2020, 17, 1101-1112.	1.8	19
16	Peat-based activated carbons as adsorbents for simultaneous separation of organic molecules from mixed solution of poly(acrylic acid) polymer and sodium dodecyl sulfate surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124179.	2.3	21
17	Adsorption and electrokinetic studies in kaolinite/anionic polyacrylamide/chromate ions system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125232.	2.3	19
18	Aggregation and thermal properties of nanostructured montmorillonite covered with mixed adsorption layers of cationic polyacrylamide and hazardous lead(II) ions. Applied Nanoscience (Switzerland), 2020, 10, 5499-5510.	1.6	8

#	Article	IF	CITATIONS
19	Chromium(VI) reduction and accumulation on the kaolinite surface in the presence of cationic soil flocculant. Journal of Soils and Sediments, 2020, 20, 3688-3697.	1.5	22
20	Anionic polyacrylamide influence on the lead(II) ion accumulation in soil – the study on montmorillonite. Journal of Environmental Health Science & Engineering, 2020, 18, 599-607.	1.4	12
21	Influence of protein internal stability on its removal mechanism from aqueous solutions using eco-friendly horsetail herb-based engineered biochar. Chemical Engineering Journal, 2020, 388, 124156.	6.6	14
22	Investigation of adsorption mechanism of phosphate(V) ions on the nanostructured Na-A zeolite surface modified with ionic polyacrylamide with regard to their removal from aqueous solution. Applied Nanoscience (Switzerland), 2020, 10, 4475-4485.	1.6	14
23	Adsorption layer structure on the surface of carbon-silica composite in the presence of proteins of different internal stability and Cu(II) ions – The effect on solid aggregation. Journal of Molecular Liquids, 2020, 309, 113072.	2.3	11
24	Studies of the Cationic Polyacrylamide Adsorption on the Montmorillonite Surface in the Presence of Lead(II) Ions. Proceedings (mdpi), 2019, 16, .	0.2	0
25	Simultaneous removal of lead(II) ions and poly(acrylic acid) macromolecules from liquid phase using of biocarbons obtained from corncob and peanut shell precursors. Journal of Molecular Liquids, 2019, 296, 111806.	2.3	25
26	Chromium(VI) and lead(II) accumulation at the montmorillonite/aqueous solution interface in the presence of polyacrylamide containing quaternary amine groups. Journal of Molecular Liquids, 2019, 293, 111514.	2.3	17
27	Investigations of chromium(III) oxide removal from the aqueous suspension using the mixed flocculant composed of anionic and cationic polyacrylamides. Journal of Hazardous Materials, 2019, 368, 378-385.	6.5	14
28	Influence of nonionic surfactants and water activity on to adsorption of 6-thioguanine at the mercury/chlorates(VII) interface. Adsorption, 2019, 25, 251-256.	1.4	4
29	Impact of water activity on double layer parameters at the mercury/chlorates(VII) interface in the presence of mixed adsorption layers of 6-mercaptopurine–Triton X-100. Adsorption, 2019, 25, 819-824.	1.4	3
30	Adsorption mechanism of poly(vinyl alcohol) on the surfaces of synthetic zeolites: sodalite, Na-P1 and Na-A. Adsorption, 2019, 25, 567-574.	1.4	12
31	Adsorptive removal of C.I. Direct Yellow 142 from textile baths using nanosized silica-titanium oxide. European Physical Journal Plus, 2019, 134, 1.	1.2	3
32	Thermal degradation of peat-based activated carbons covered with mixed adsorption layers of PAA polymer and SDS surfactant. Thermochimica Acta, 2019, 676, 71-83.	1.2	22
33	Adsorption layer structure at soil mineral/biopolymer/supporting electrolyte interface – The impact on solid aggregation. Journal of Molecular Liquids, 2019, 284, 117-123.	2.3	10
34	Poly(L-lysine)-poly(ethylene glycol) layers with different structure and their influence on silica suspension stability. Materials Science and Technology, 2019, 35, 742-746.	0.8	1
35	Anionic polyacrylamide efficiency in goethite removal from aqueous solutions: goethite suspension destabilization by PAM. International Journal of Environmental Science and Technology, 2019, 16, 3145-3154.	1.8	11
36	Comparison of adsorption affinity of anionic and cationic polyacrylamides for montmorillonite surface in the presence of chromium(VI) ions. Adsorption, 2019, 25, 41-50.	1.4	23

#	Article	IF	CITATIONS
37	Comparison of adsorption affinity of anionic polyacrylamide for nanostructured silica-titania mixed oxides. Journal of Molecular Liquids, 2018, 258, 27-33.	2.3	10
38	Nanosized silica–titanium oxide as a potential adsorbent for C.I. Acid Yellow 219 dye removal from textile baths and wastewaters. Applied Nanoscience (Switzerland), 2018, 8, 867-876.	1.6	11
39	Flocculation efficiency of the Sinorhizobium meliloti 1021 exopolysaccharide relative to mineral oxide suspensions – A preliminary study for wastewater treatment. Separation and Purification Technology, 2018, 201, 51-59.	3.9	9
40	Electrical double layer at the gibbsite/anionic polyacrylamide/supporting electrolyte interface – Adsorption, spectroscopy and electrokinetic studies. Journal of Molecular Liquids, 2018, 261, 439-445.	2.3	18
41	Effects of mixed adsorption layers of 6-mercaptopurine – Triton X-100 and 6-mercaptopurine – Tween 80 on the double layer parameters at the mercury/chlorates(VII) interface. Journal of Molecular Liquids, 2018, 253, 143-148.	2.3	16
42	Nanosized Oxides of Different Compositions as Adsorbents for Hazardous Substances Removal from Aqueous Solutions and Wastewaters. Springer Proceedings in Physics, 2018, , 103-126.	0.1	1
43	Lysozyme as a flocculant-inducing agent improving the silica removal from aqueous solutions - A turbidimetric study. Journal of Environmental Management, 2018, 226, 187-193.	3.8	5
44	The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions. Chemosphere, 2018, 211, 524-534.	4.2	48
45	Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid). Journal of Cleaner Production, 2018, 195, 821-830.	4.6	44
46	Effects of Amino Acids Protonation on Double-Layer Parameters of the Electrode/Chlorates(VII) Interface, as well as Kinetics and Mechanism of Bi(III) Ion Electroreduction in the Aspect of the "Cap–Pair―Effect. Springer Proceedings in Physics, 2018, , 285-300.	0.1	3
47	Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Microporous and Mesoporous Materials, 2017, 250, 128-147.	2.2	84
48	Adsorption of poly(acrylic acid) on the surface of microporous activated carbon obtained from cherry stones. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 137-145.	2.3	34
49	Surface properties of nanozirconia modified by ionic polyacrylamide – Impact of polymer functional groups type. Materials Letters, 2017, 205, 32-35.	1.3	5
50	Application of silica–alumina oxides of different compositions for removal of C.I. Reactive Black 5 dye from wastewaters. Adsorption Science and Technology, 2017, 35, 448-457.	1.5	10
51	Nanostructure of Poly(Acrylic Acid) Adsorption Layer on the Surface of Activated Carbon Obtained from Residue After Supercritical Extraction of Hops. Nanoscale Research Letters, 2017, 12, 2.	3.1	37
52	Thermal and physicochemical properties of phosphorus-containing activated carbons obtained from biomass. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 1006-1013.	2.7	32
53	Studies of anionic dendrimer adsorption mechanism on the zirconium(IV) oxide surface – Electrokinetic and thermal properties of nanosized composites. Journal of Molecular Liquids, 2017, 246, 25-31.	2.3	3
54	Comparison of adsorption affinity of ionic polyacrylamide for the surfaces of selected metal oxides. Adsorption Science and Technology, 2017, 35, 582-591.	1.5	9

#	Article	IF	CITATIONS
55	Turbidimetric studies of colloidal silica/aqueous solution system stability. Surface Innovations, 2017, 5, 138-146.	1.4	3
56	Removal studies of Cr 2 O 3 colloidal particles using cationic poly(l -lysine) and its block copolymers with poly(ethylene glycol). Journal of Molecular Liquids, 2017, 241, 952-958.	2.3	4
57	The effect of homocysteine and homocystine protonation on double-layer parameters at the electrode/chlorates(VII) interface. Adsorption Science and Technology, 2017, 35, 396-402.	1.5	3
58	Influence of Solution pH on the Nanostructure of Adsorption Layer of Selected Ionic Polyamino Acids and Their Copolymers at the Solid-Liquid Interface. Springer Proceedings in Physics, 2017, , 431-444.	0.1	0
59	Comparison of the Poly(vinyl alcohol) Adsorption Behaviour on the Mixed Oxides with Different Surface Structure. Medziagotyra, 2016, 22, .	0.1	1
60	Nanozirconia surface modification by anionic polyacrylamide in relation to the solid suspension stability — Effect of anionic surfactant addition. Powder Technology, 2016, 302, 357-362.	2.1	16
61	Adsorption of cationic polyacrylamide on the surface of mesoporous nanozirconia and its influence on the solid aqueous suspension stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 214-223.	2.3	8
62	Impact of anionic polyacrylamide on stability and surface properties of the Al2O3–polymer solution system at different temperatures. Colloid and Polymer Science, 2016, 294, 1511-1517.	1.0	16
63	The effects of homocysteine protonation on double layer parameters at the electrode/chlorates (VII) interface, as well as the kinetics and the mechanism of Bi (III) ion electroreduction. Electrochimica Acta, 2016, 207, 48-57.	2.6	11
64	Impact of lysozyme on stability mechanism of nanozirconia aqueous suspension. Applied Surface Science, 2016, 379, 8-13.	3.1	5
65	Impact of adsorption of poly(aspartic acid) and its copolymers with polyethylene glycol on thermal characteristic of Cr2O3. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1171-1184.	2.0	7
66	Synthetic polyacrylamide as a potential flocculent to remove commercial chromium(III) oxide from aqueous suspension. International Journal of Environmental Science and Technology, 2016, 13, 679-690.	1.8	15
67	Adsorption properties of the nanozirconia/anionic polyacrylamide system—Effects of surfactant presence, solution pH and polymer carboxyl groups content. Applied Surface Science, 2016, 370, 351-356.	3.1	26
68	Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2. Adsorption, 2016, 22, 417-423.	1.4	30
69	Stability mechanism of the silica suspension in the Sinorhizobium meliloti 1021 exopolysaccharide presence. Journal of Industrial and Engineering Chemistry, 2016, 35, 108-114.	2.9	9
70	Comparison of adsorption properties of Mg x O y –SiO 2 and Zn x O y –SiO 2 in the mixed oxide-poly(vinyl alcohol) system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492, 12-18.	2.3	17
71	Production of activated carbons from biodegradable waste materials as an alternative way of their utilisation. Adsorption, 2016, 22, 489-502.	1.4	31
72	Influence of temperature on adsorption mechanism of anionic polyacrylamide in the Al2O3 –aqueous solution system. Fluid Phase Equilibria, 2016, 408, 205-211.	1.4	14

#	Article	IF	CITATIONS
73	Adsorption layer structure in the system of the ionic block polyamino acid copolymers/SiO2 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488, 138-144.	2.3	15
74	Adsorption of ionic polyacrylamide in the chromium(III) oxide/solution system. A study on removal of a undesirable solid from aqueous medium Adsorpcja jonowego poliakryloamidu w ukÅ,adzie tlenek chromu(III) – roztwór. Badanie usuwania niepoĂ¼Ädanej substancji staÅ,ej ze Å>rodowiska wodnego. Przemysl Chemiczny, 2016, 1, 135-139.	0.0	0
75	Adsorption and Stability Properties of Aqueous Suspension of Chromium (III) Oxide in the Presence of Synthetic and Natural Polymers: Possibilities of Solid Removal. Adsorption Science and Technology, 2015, 33, 693-700.	1.5	6
76	Adsorption of Selected Amino Acids at the Mercury/Aqueous Solution Interface from the Chlorate (VII) and Its Dependence on the Supporting Electrolyte Concentration. Adsorption Science and Technology, 2015, 33, 553-558.	1.5	10
77	Lysozyme adsorption on the colloidal chromium(III) oxide surface: Its impact on the system stability. Applied Surface Science, 2015, 347, 491-498.	3.1	5
78	Influence of solution pH, supporting electrolyte presence and solid content on the stability of aqueous nanosilica suspension. Journal of Industrial and Engineering Chemistry, 2015, 30, 71-76.	2.9	20
79	Albumin adsorption influence on the stability of the mesoporous zirconia suspension. Journal of Industrial and Engineering Chemistry, 2015, 32, 113-119.	2.9	18
80	Investigation of removal possibilities of chromium(III) oxide from water solution in the presence of albumins. International Journal of Environmental Science and Technology, 2015, 12, 2947-2956.	1.8	13
81	Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST 50 (Al2O3–SiO2–TiO2). Journal of Nanoparticle Research, 2015, 17, 12.	0.8	56
82	The Influence of Protonation on the Electroreduction of Bi (III) Ions in Chlorates (VII) Solutions of Different Water Activity. Electrocatalysis, 2015, 6, 315-321.	1.5	12
83	Adsorption and thermal properties of the bovine serum albumin–silicon dioxide system. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1355-1364.	2.0	50
84	Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide. Powder Technology, 2015, 278, 306-315.	2.1	100
85	Impact of anionic and cationic polyacrylamide on the stability of aqueous alumina suspension—comparison of adsorption mechanism. Colloid and Polymer Science, 2015, 293, 1171-1179.	1.0	14
86	Adsorption, Electrokinetic and Stabilizing Properties of the Guar Gum/Surfactant/Alumina System. Journal of Surfactants and Detergents, 2015, 18, 445-453.	1.0	9
87	Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers. Journal of Hazardous Materials, 2015, 290, 69-77.	6.5	29
88	The impact of polymer structure on the adsorption of ionic polyamino acid homopolymers and their diblock copolymers on colloidal chromium(<scp>iii</scp>) oxide. RSC Advances, 2015, 5, 28505-28514.	1.7	16
89	Adsorption mechanism of poly(vinyl alcohol) at the mixed oxide Cu x O y –SiO 2 /aqueous solution interface. Applied Surface Science, 2015, 356, 905-910.	3.1	8
90	Modification of the alumina surface properties by adsorbed anionic polyacrylamide—Impact of polymer hydrolysis. Journal of Industrial and Engineering Chemistry, 2015, 21, 925-931.	2.9	31

#	Article	IF	CITATIONS
91	Impact of polyacrylamide with different contents of carboxyl groups on the chromium (III) oxide adsorption properties in aqueous solution. Journal of Hazardous Materials, 2015, 283, 815-823.	6.5	47
92	Effect of polyvinyl alcohol adsorption on the mixed alumina–silica–titania suspension stability. Journal of Industrial and Engineering Chemistry, 2015, 23, 265-272.	2.9	20
93	Effect of the presence of cationic polyacrylamide on the surface properties of aqueous alumina suspension-stability mechanism. Applied Surface Science, 2014, 320, 843-851.	3.1	20
94	Adsorption Properties of the Albumin–Chromium(III) Oxide System – Effect of Solution Ph and Ionic Strength. Soft Materials, 2014, 12, 268-276.	0.8	19
95	Comparison of stability properties of poly(acrylic acid) adsorbed on the surface of silica, alumina and mixed silica-alumina nanoparticles — application of turbidimetry method. Open Chemistry, 2014, 12, 476-479.	1.0	20
96	Investigations of the properties of the manganese dioxide suspensions in the presence of guar gum and carboxymethylcellulose. Materials Chemistry and Physics, 2014, 144, 361-368.	2.0	5
97	Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica–alumina. Colloid and Polymer Science, 2014, 292, 699-705.	1.0	98
98	Investigation of stabilization and destabilization possibilities of water alumina suspension in polyelectrolyte presence. International Journal of Mineral Processing, 2014, 132, 34-42.	2.6	10
99	Sinorhizobium meliloti 1021 Exopolysaccharide as a Flocculant Improving Chromium(III) Oxide Removal from Aqueous Solutions. Water, Air, and Soil Pollution, 2014, 225, 2052.	1.1	25
100	Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid and Polymer Science, 2014, 292, 2453-2464.	1.0	192
101	Comparison of the influence of polyaspartic acid and polylysine functional groups on the adsorption at the Cr2O3—Aqueous polymer solution interface. Applied Surface Science, 2014, 311, 734-739.	3.1	35
102	Removal possibilities of colloidal chromium (III) oxide from water using polyacrylic acid. Environmental Science and Pollution Research, 2013, 20, 3657-3669.	2.7	37
103	Influence of the solid type on the adsorption mechanism of nonionic polymers in the metal oxide/water solution system—temperature effect. Powder Technology, 2013, 246, 682-688.	2.1	5
104	Temperature effect on the adsorption equilibrium at the silica–polyethylene glycol solution interface. Fluid Phase Equilibria, 2013, 360, 10-15.	1.4	11
105	Stability of Colloidal Silica Modified by Macromolecular Polyacrylic Acid (PAA) – Application of Turbidymetry Method. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 639-643.	1.2	18
106	Effect of the solid pore size on the structure of polymer film at the metal oxide/polyacrylic acid solution interface – Temperature impact. Microporous and Mesoporous Materials, 2013, 175, 92-98.	2.2	36
107	Effect of solution pH on the stability of mixed silica -alumina suspension in the presence of polyacrylic acid (PAA) with different molecular weights. Open Chemistry, 2013, 11, 101-110.	1.0	14
108	Investigations of flocculation possibilities of the water alumina suspension in the presence of nonionic polymer. Journal of Industrial and Engineering Chemistry, 2013, 19, 263-271.	2.9	9

#	Article	IF	CITATIONS
109	Effect of polyacrylic acid (PAA) adsorption on stability of mixed aluminaâ€silica oxide suspension. Powder Technology, 2013, 233, 190-200.	2.1	45
110	Possibilities of Colloidal Silica Separation from Water Suspension in the Polyethylene Glycol (PEG) Presence at Different Temperatures. Separation Science and Technology, 2013, 48, 1073-1080.	1.3	8
111	Studies of the Alumina Suspension Stability in the Presence of Anionic Polymer—Influences of Polymer Molecular Weight, its Concentration and Solution pH. Molecular Crystals and Liquid Crystals, 2012, 555, 7-16.	0.4	4
112	The temperature effect on the adsorption mechanism of polyacrylamide on the silica surface and its stability. Applied Surface Science, 2012, 258, 3094-3101.	3.1	59
113	Effect of the type of polymer functional groups on the structure of its film formed on the alumina surface – Suspension stability. Reactive and Functional Polymers, 2012, 72, 791-798.	2.0	33
114	Investigation of the stability of an alumina suspension in the presence of ionic polyacrylamide. Thin Solid Films, 2012, 520, 6158-6164.	0.8	13
115	Temperature effects on the adsorption of polyvinyl alcohol on silica. Open Chemistry, 2012, 10, 1236-1244.	1.0	9
	The Spectrophotometric Investigation of Nonionic Polymer Adsorption (Polyethylene Glycol (PEG),) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
116	Effects of Polymer Type, its Molecular Weight and Solution pH. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 851-854.	1.2	3
117	Investigation of the alumina properties with adsorbed polyvinyl alcohol. Journal of Thermal Analysis and Calorimetry, 2011, 103, 329-337.	2.0	41
118	The temperature effect on electrokinetic properties of the silica–polyvinyl alcohol (PVA) system. Colloid and Polymer Science, 2011, 289, 341-344.	1.0	40
119	A Review of Temperature Influence on Adsorption Mechanism and Conformation of Water Soluble Polymers on the Solid Surface. Journal of Dispersion Science and Technology, 2011, 32, 1605-1623.	1.3	33
120	Influences of polyacrylic acid adsorption and temperature on the alumina suspension stability. Powder Technology, 2010, 198, 258-266.	2.1	76
121	Influence of solution pH on stability of aluminum oxide suspension in presence of polyacrylic acid. Adsorption, 2010, 16, 321-332.	1.4	38
122	Studies of temperature influence on adsorption behaviour of nonionic polymers at the zirconia–solution interface. Journal of Thermal Analysis and Calorimetry, 2010, 101, 743-751.	2.0	8
123	Temperature effect on adsorption properties of silica-polyacrylic acid interface. Journal of Thermal Analysis and Calorimetry, 2010, 101, 753-760.	2.0	30
124	The structure of electrical double layer of silica in the presence of polyvinyl alcohol (PVA) at different temperatures. Materials Letters, 2010, 64, 1611-1613.	1.3	15
125	Adsorption and thermodynamic properties of the alumina–polyacrylic acid solution system. Journal of Colloid and Interface Science, 2009, 334, 146-152.	5.0	39
126	Temperature Study of Nonionic Polymers Adsorption at the Alumina—Solution Interface. Journal of the American Ceramic Society, 2007, 90, 3608-3614.	1.9	19

#	Article	IF	CITATIONS
127	The temperature influence on the adsorption and electrokinetical properties in the nonionic polymer/controlled porosity glass (CPC) system. Materials Chemistry and Physics, 2007, 103, 216-221.	2.0	15
128	Study of the Influence of Temperature and the Ionic Strength of the Solution on the Adsorption and Conformation of Poly(Acrylic Acid) Macromolecules on the ZrO ₂ Surface. Adsorption Science and Technology, 2006, 24, 673-686.	1.5	8
129	Influence of Temperature and Purity of Polyacrylic Acid on its Adsorption and Surface Structures at the ZrO2/Polymer Solution Interface. Adsorption Science and Technology, 2005, 23, 655-667.	1.5	32
130	Application of the SAXS method and viscometry for determination of the thickness of adsorbed polymer layers at the ZrO2–polymer solution interface. Journal of Colloid and Interface Science, 2003, 267, 1-8.	5.0	50
131	The Influence of Surfactant (SDS) on the Adsorption Properties of Polyvinyl Alcohol and Polyethylene Glycol in an Alumina/Solution System. Adsorption Science and Technology, 2002, 20, 573-582.	1.5	5
132	Adsorption of Polyelectrolytes at the Manganese Oxide(IV)–Polymer Solution Interface: Structure of Adsorbed Layers. Adsorption Science and Technology, 2002, 20, 511-522.	1.5	10
133	Study of electrokinetic properties and structure of adsorbed layers of polyacrylic acid and polyacrylamide at Fe2O3–polymer solution interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 131-145.	2.3	60
134	Study of the Adsorption Mechanism and the Structure of Adsorbed Layers of Polyelectrolytes at the Metal Oxide/Solution Interface. Adsorption Science and Technology, 2001, 19, 409-421.	1.5	26
135	Electroreduction of Bi(III) ions in the aspect of expanding the "cap-pair―effect: the role of the nanosized active complexes. Applied Nanoscience (Switzerland), 0, , 1.	1.6	1
136	Adsorption and electrokinetic studies of sodalite/lithium/poly(acrylic acid) aqueous system. Physicochemical Problems of Mineral Processing, 0, , 158-166.	0.2	4
137	Alumina-silica-titania adsorbent for hazardous azo and phtalocyanine dyes removal from textile baths and wastewaters – the impact of ionic surfactants. Physicochemical Problems of Mineral Processing, 0, , 178-193.	0.2	5
138	Electrokinetic properties of silica-titania mixed oxide particles dispersed in aqueous solution of C.I. Direct Yellow 142 dye – effects of surfactant and electrolyte presence. Physicochemical Problems of Mineral Processing, 0, , 6-13.	0.2	1
139	Temperature influence on the electrode process in the presence of 6-thioguanine and surfactants. Physicochemical Problems of Mineral Processing, 0, , .	0.2	0