Elena Yazhenskikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9097589/publications.pdf

Version: 2024-02-01

623734 610901 30 580 14 24 citations g-index h-index papers 30 30 30 412 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of woodstove briquettes from torrefied biomass and coal. Energy, 2019, 171, 853-865.	8.8	65
2	Viscosity model for oxide melts relevant to fuel slags. Part 1: Pure oxides and binary systems in the system SiO2–Al2O3–CaO–MgO–Na2O–K2O. Fuel Processing Technology, 2015, 137, 93-103.	7.2	59
3	Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags. Part 1: Alkali oxide–silica systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 270-276.	1.6	42
4	Corrosion of silicon carbide hot gas filter candles in gasification environment. Journal of the European Ceramic Society, 2014, 34, 575-588.	5.7	35
5	Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts. Applied Energy, 2019, 236, 837-849.	10.1	35
6	Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags, Part 5: Potassium oxide–alumina–silica. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 6-19.	1.6	33
7	Viscosity model for oxide melts relevant to fuel slags. Part 2: The system SiO 2 –Al 2 O 3 –CaO–MgO–Na 2 O–K 2 O. Fuel Processing Technology, 2015, 138, 520-533.	7.2	31
8	Viscosity model for oxide melts relevant to fuel slags. Part 3: The iron oxide containing low order systems in the system SiO2–Al2O3–CaO–MgO–Na2O–K2O–FeO–Fe2O3. Fuel Processing Technol 2018, 171, 339-349.	l <i>ത്യു</i> ,	29
9	Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 2: Alkali oxide–alumina systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 397-404.	1.6	28
10	Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags, Part 4: Sodium oxide–silica. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 506-513.	1.6	23
11	Corrosion of alumina and mullite hot gas filter candles in gasification environment. Journal of the European Ceramic Society, 2013, 33, 3301-3312.	5.7	21
12	Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags. Part 3: Silica–alumina system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 195-205.	1.6	19
13	Viscosity Model for Oxide Melts Relevant to Coal Ash Slags Based on the Associate Species Thermodynamic Model. Energy & Energy & 2013, 27, 6469-6476.	5.1	17
14	Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags: Potassium oxide–magnesium oxide–silica. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 47, 35-49.	1.6	17
15	Addition of TiO2 and Ti2O3 to the Al2O3-FeO-Fe2O3-MgO system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 62, 187-200.	1.6	17
16	Thermophysical and chemical properties of bioliq slags. Fuel, 2017, 197, 596-604.	6.4	16
17	Calciumâ€Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries. Journal of the American Ceramic Society, 2016, 99, 4083-4092.	3.8	13
18	Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries. Energy, 2020, 193, 116736.	8.8	12

#	Article	IF	CITATIONS
19	Addition of V2O5 and V2O3 to the CaO–FeO–Fe2O3–MgO–SiO2 database for vanadium distribution and viscosity calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102284.	d 1.6	12
20	Evaluation of thermodynamic data and phase equilibria in the system Ca–Cr–Cu–Fe–Mg–Mn–S part Binary and quasi-binary subsystems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 56, 270-285.	l: 1.6	10
21	Evaluation of thermodynamic data and phase equilibria in the system Ca-Cr-Cu-Fe-Mg-Mn-S Part II: Ternary and quasi-ternary subsystems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 56, 286-302.	1.6	9
22	Critical thermodynamic evaluation of the binary sub-systems of the core sulphate system Na2SO4–K2SO4–MgSO4–CaSO4. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 72, 102234.	1.6	8
23	Thermodynamic assessment of the CaO–P2O5–SiO2–ZnO system with special emphasis on the addition of ZnO to the Ca2SiO4–Ca3P2O8 phase. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67, 101668.	1.6	7
24	Comparison of Na2SO4, K2SO4 and Na2SO4-K2SO4 deposit induced hot corrosion of a \hat{l}^2 -NiAl coating. Corrosion Science, 2022, 198, 110146.	6.6	7
25	Role of Temperature in Na ₂ SO ₄ –K ₂ SO ₄ Deposit Induced Type II Hot Corrosion of NiAl Coating on a Commercial Niâ€Based Superalloy. Advanced Engineering Materials, 2020, 22, 1901244.	3.5	6
26	Experimental study and thermodynamic assessment of thermodynamic properties of pure Li2CO3 and K2CO3. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 78, 102452.	1.6	4
27	Experimental study coupled with thermodynamic assessment of the NiSO4–K2SO4 quasi binary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102328.	1.6	3
28	Thermodynamic description of the ternary systems of the core sulphate system Na2SO4–K2SO4–MgSO4–CaSO4. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102313.	1.6	2
29	Korrosionsverhalten keramischer Werkstoffe f $ ilde{A}^{1}\!\!/4$ r die Wirbelschicht-Vergasung alkalireicher Brennstoffe. , 2018, , 779-794.		0
30	Korrosionsverhalten keramischer Filterkerzen., 2018,, 795-811.		0