Alain Brans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9096710/publications.pdf

Version: 2024-02-01

477173 567144 5,054 30 15 29 h-index citations g-index papers 31 31 31 4958 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390, 249-256.	13.7	3,519
2	Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 2007, 9, 1084-1090.	1.8	694
3	Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 2009, 8, 63.	1.9	298
4	Engineering a Camelid Antibody Fragment That Binds to the Active Site of Human Lysozyme and Inhibits Its Conversion into Amyloid Fibrils. Biochemistry, 2008, 47, 11041-11054.	1.2	66
5	Crystal Structure of the Sensor Domain of the BlaR Penicillin Receptor fromBacillus licheniformisâ€,‡. Biochemistry, 2003, 42, 12835-12843.	1.2	50
6	Critical Role of Tryptophan 154 for the Activity and Stability of Class D \hat{l}^2 -Lactamases,. Biochemistry, 2009, 48, 11252-11263.	1.2	46
7	Surface functionalization of germanium ATR devices for use in FTIR-biosensors. Journal of Colloid and Interface Science, 2009, 332, 408-415.	5.0	45
8	New Integrative Method To Generate Bacillus subtilis Recombinant Strains Free of Selection Markers. Applied and Environmental Microbiology, 2004, 70, 7241-7250.	1.4	41
9	The fate of the BlaI repressor during the induction of the Bacillus licheniformis BlaP β-lactamase. Molecular Microbiology, 2002, 44, 685-694.	1.2	35
10	Ligand Binding Study of Human PEBP1/RKIP: Interaction with Nucleotides and Raf-1 Peptides Evidenced by NMR and Mass Spectrometry. PLoS ONE, 2012, 7, e36187.	1.1	29
11	The kinetic properties of the carboxy terminal domain of the Bacillus licheniformis 749/I BlaR penicillin-receptor shed a new light on the derepression of \hat{I}^2 -lactamase synthesis. Molecular Microbiology, 2003, 48, 1553-1564.	1.2	28
12	Purification and Characterization of PBP4a, a New Low-Molecular-Weight Penicillin-Binding Protein from Bacillus subtilis. Journal of Bacteriology, 2001, 183, 1595-1599.	1.0	23
13	Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate. BMC Biochemistry, 2007, 8, 17.	4.4	23
14	A Pathway Closely Related to the <scp>d</scp> -Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis. Applied and Environmental Microbiology, 2013, 79, 3511-3515.	1.4	23
15	Secondary-structure characterization by far-UV CD of highly purified uncoupling protein 1 expressed in yeast. Biochemical Journal, 2004, 380, 139-145.	1.7	17
16	6-Aminopenicillanic acid (6-APA) derivatives equipped with anchoring arms. Tetrahedron, 2012, 68, 10818-10826.	1.0	15
17	Production and characterization of virus-like particles of grapevine fanleaf virus presenting L2 epitope of human papillomavirus minor capsid protein. BMC Biotechnology, 2019, 19, 81.	1.7	15
18	Two different β-lactamase genes are present inStreptomycees cacaoi. FEMS Microbiology Letters, 1992, 99, 101-105.	0.7	10

#	Article	IF	CITATIONS
19	Adsorption Properties of the Penicillin Derivative DTPA on Gold Substrates. ChemPhysChem, 2007, 8, 1071-1076.	1.0	10
20	Folding of Class A $\hat{1}^2$ -Lactamases Is Rate-Limited by Peptide Bond Isomerization and Occurs via Parallel Pathways. Biochemistry, 2010, 49, 4264-4275.	1.2	10
21	How Quantum Dots Aggregation Enhances Förster Resonant Energy Transfer. ChemPhysChem, 2020, 21, 853-862.	1.0	10
22	Cloning and sequencing of the <i>dnaK </i> locus in <i>Streptomyces coelicolor </i> A3 (2). DNA Sequence, 1996, 6, 179-184.	0.7	9
23	Exploring the suitability of RanBP2-type Zinc Fingers for RNA-binding protein design. Scientific Reports, 2019, 9, 2484.	1.6	9
24	Purification and biochemical characterization of two novel extracellular keratinases with feather-degradation and hide-dehairing potential. Process Biochemistry, 2021, 106, 137-148.	1.8	9
25	Interactions between Avibactam and Ceftazidime-Hydrolyzing Class D \hat{l}^2 -Lactamases. Biomolecules, 2020, 10, 483.	1.8	7
26	Characterisation of the structural, dynamic and aggregation properties of the W64R amyloidogenic variant of human lysozyme. Biophysical Chemistry, 2021, 271, 106563.	1.5	5
27	Product inhibition of mammalian thiamine pyrophosphokinase is an important mechanism for maintaining thiamine diphosphate homeostasis. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130071.	1.1	4
28	2â€Nitrobenzyl Esters of Penam and Cephem Derivatives as Inhibitors of Penicillinâ€Binding Proteins. Asian Journal of Organic Chemistry, 2013, 2, 654-661.	1.3	2
29	Use of an automatic DNA sequencer for S1 mapping: transcriptional analysis of the Streptomyces coelicolor A3(2) dnaK operon. FEMS Microbiology Letters, 2006, 149, 189-194.	0.7	1
30	Protein formulation through automated screening of pH and buffer conditions, using the Robotein® high throughput facility. European Biophysics Journal, 2021, 50, 473-490.	1.2	1