
Florentino LÃ³pez-UrÃ-as

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9096584/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The synthesis of sponge-type nitrogen-doped multiwall carbon nanotubes using ball-milled natural red-leptosol as catalyst precursor: A cycle voltammetry study. Carbon, 2022, 196, 510-524.	10.3	6
2	Tailoring the structure of MoS2 using ball-milled MoO3 powders: hexagonal, triangular, and fullerene-like shapes. Nanotechnology, 2021, 32, 155605.	2.6	1
3	Nitrogen–phosphorus doped graphitic nano onion-like structures: experimental and theoretical studies. RSC Advances, 2021, 11, 2793-2803.	3.6	20
4	Nitrogen and Sulfur Incorporation into Graphene Oxide by Mechanical Process. Advanced Engineering Materials, 2021, 23, 2001444.	3.5	1
5	Nitrogen and Sulfur Incorporation into Graphene Oxide by Mechanical Process. Advanced Engineering Materials, 2021, 23, 2170015.	3.5	0
6	Tuning the electronic and magnetic properties of graphene nanoribbons through phosphorus doping and functionalization. Materials Chemistry and Physics, 2021, 265, 124450.	4.0	16
7	Effect of pyrrolic-N defects on the capacitance and magnetization of nitrogen-doped multiwalled carbon nanotubes. Carbon, 2021, 183, 743-762.	10.3	22
8	Hybrid materials based on pyrrhotite, troilite, and few-layered graphitic nanostructures: Synthesis, characterization, and cyclic voltammetry studies. Applied Surface Science, 2021, 563, 150327.	6.1	4
9	Synthesis, morphology, magnetic and electrochemical studies of nitrogen-doped multiwall carbon nanotubes fabricated using banded iron-formation as catalyst. Journal of Alloys and Compounds, 2020, 835, 155200.	5.5	15
10	Holey nitrogen-doped multiwalled carbon nanotubes from extended air oxidation at low-temperature. Applied Surface Science, 2020, 524, 146546.	6.1	6
11	Furan and Pyran Functional Groups Driven the Surface of Nitrogenâ€Doped Nanofiber Sponges. ChemNanoMat, 2020, 6, 672-684.	2.8	4
12	Edge Chemistry of Armchair Graphene Nanoribbons Containing Sulfur Functional Groups: Towards an Understanding of the Spinâ€Đependent Electrochemistry. Advanced Theory and Simulations, 2020, 3, 1900219.	2.8	3
13	Pyrrolic nitrogen-doped multiwall carbon nanotubes using ball-milled slag-SiC mixtures as a catalyst by aerosol assisted chemical vapor deposition. Materials Research Express, 2020, , .	1.6	4
14	Spin-dependent band-gap driven by nitrogen and oxygen functional groups in zigzag graphene nanoribbons. Applied Surface Science, 2020, 521, 146435.	6.1	13
15	Chloride functionalized carbon nanotube sponge: High charge capacity and high magnetic saturation. Carbon, 2020, 164, 324-336.	10.3	18
16	Understanding the electrochemistry of armchair graphene nanoribbons containing nitrogen and oxygen functional groups: DFT calculations. Physical Chemistry Chemical Physics, 2020, 22, 4533-4543.	2.8	15
17	Oxygenated Surface of Carbon Nanotube Sponges: Electroactivity and Magnetic Studies. ACS Omega, 2019, 4, 18011-18022.	3.5	12
18	Synthesis, characterization and cyclic voltammetry studies of helical carbon nanostructures produced by thermal decomposition of ethanol on Cu-foils. Carbon, 2019, 155, 469-482.	10.3	8

Florentino LÃ³pez-UrÃas

#	ARTICLE	IF	CITATIONS
19	Nitrogen-doped carbon fiber sponges by using different nitrogen precursors: synthesis, characterization, and electrochemical activity. Materials Today Chemistry, 2019, 14, 100200.	3.5	3
20	Two Sprayer CVD Synthesis of Nitrogen-doped Carbon Sponge-type Nanomaterials. Scientific Reports, 2018, 8, 2983.	3.3	29
21	Wrinkled Nitrogen-doped Carbon Belts. Scientific Reports, 2018, 8, 3546.	3.3	8
22	Efficient carbon nanotube sponges production boosted by acetone in CVD-Synthesis. Carbon, 2018, 135, 145-156.	10.3	18
23	Synthesis of ZnMn2O4 Nanoparticles by a Microwave-Assisted Colloidal Method and their Evaluation as a Gas Sensor of Propane and Carbon Monoxide. Sensors, 2018, 18, 701.	3.8	43
24	Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon, 2017, 115, 409-421.	10.3	49
25	First-principles study of transition metal adsorbed on porphyrin-like motifs in pyrrolic nitrogen-doped carbon nanostructures. Carbon, 2017, 116, 381-390.	10.3	16
26	Synthesis, Characterization, and Sensor Applications of Spinel ZnCo2O4 Nanoparticles. Sensors, 2016, 16, 2162.	3.8	26
27	Extended line defects in BN, GaN, and AlN semiconductor materials: Graphene-like structures. Chemical Physics Letters, 2016, 652, 73-78.	2.6	20
28	GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes. Scientific Reports, 2016, 5, 17902.	3.3	54
29	Cobalt double-ring and double-dot structures: Magnetic properties. Physica B: Condensed Matter, 2016, 483, 62-68.	2.7	3
30	Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study. Applied Surface Science, 2016, 368, 191-197.	6.1	4
31	Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. RSC Advances, 2016, 6, 21954-21960.	3.6	24
32	Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes. Carbon, 2015, 84, 317-326.	10.3	27
33	Three-dimensional Nanotube Networks and a New Horizon of Applications. , 2014, , 457-493.		2
34	Nanoribbons: Nitrogenâ€Đoped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv.) Tj ETQo	q0 <u>0</u> 0 rgB	T /Overlock 1

35	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	14.9	31
36	Nitrogen–Silicon Heterodoping of Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 8481-8490.	3.1	19

FLORENTINO LÃ³PEZ-URÃAS

#	Article	IF	CITATIONS
37	Photosensor Device Based on Few‣ayered WS ₂ Films. Advanced Functional Materials, 2013, 23, 5511-5517.	14.9	546
38	Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 3, .	3.3	1,185
39	Sensors: Photosensor Device Based on Fewâ€Layered WS ₂ Films (Adv. Funct. Mater. 44/2013). Advanced Functional Materials, 2013, 23, 5510-5510.	14.9	7
40	Phosphorus and phosphorus–nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. Nanoscale, 2011, 3, 1008-1013.	5.6	102
41	Doping (10, 0)-Semiconductor Nanotubes with Nitrogen and Vacancy Defects. Materials Express, 2011, 1, 127-135.	0.5	22
42	Controlling high coercivities of ferromagnetic nanowires encapsulated in carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 5906.	6.7	59
43	Effect of impurities on the electronic and magnetic properties of zinc oxide nanostructures. Chemical Physics Letters, 2010, 492, 82-88.	2.6	18
44	Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5, 351-372.	11.9	817
45	Observation of magnetic edge state in graphene nanoribbons. Physical Review B, 2010, 81, .	3.2	132
46	Synthesis, Electronic Structure, and Raman Scattering of Phosphorus-Doped Single-Wall Carbon Nanotubes. Nano Letters, 2009, 9, 2267-2272.	9.1	134
47	Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorusâ~'Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2009, 3, 1913-1921.	14.6	228
48	Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorusâ^'Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2008, 2, 441-448.	14.6	192
49	Pure and doped boron nitride nanotubes. Materials Today, 2007, 10, 30-38.	14.2	204
50	Micromagnetic simulation of iron nanorings. Journal of Magnetism and Magnetic Materials, 2005, 294, e1-e5.	2.3	12
51	Creation of Helical Vortices during Magnetization of Aligned Carbon Nanotubes Filled with Fe: Theory and Experiment. Physical Review Letters, 2005, 94, 216102.	7.8	28
52	Production and Characterization of Single-Crystal FeCo Nanowires Inside Carbon Nanotubes. Nano Letters, 2005, 5, 467-472.	9.1	167
53	Nâ€doped carbon nanotube sponges and their excellent lithium storage performances. Nano Select, 0, , .	3.7	4

54 Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .

#	Article	IF	CITATIONS
55	Unconventional Metallicity in Graphene Nanoribbons with Armchair Edges. Advanced Theory and Simulations, 0, , 2100392.	2.8	1