Florentino López-UrÃ-as

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9096584/publications.pdf

Version: 2024-02-01

55 papers 4,408 citations

331670 21 h-index 206112 48 g-index

56 all docs

56
docs citations

56 times ranked 7825 citing authors

#	Article	IF	CITATIONS
1	Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 3, .	3.3	1,185
2	Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5, 351-372.	11.9	817
3	Photosensor Device Based on Few‣ayered WS ₂ Films. Advanced Functional Materials, 2013, 23, 5511-5517.	14.9	546
4	Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorusâ^'Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2009, 3, 1913-1921.	14.6	228
5	Pure and doped boron nitride nanotubes. Materials Today, 2007, 10, 30-38.	14.2	204
6	Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorusâ^'Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2008, 2, 441-448.	14.6	192
7	Production and Characterization of Single-Crystal FeCo Nanowires Inside Carbon Nanotubes. Nano Letters, 2005, 5, 467-472.	9.1	167
8	Synthesis, Electronic Structure, and Raman Scattering of Phosphorus-Doped Single-Wall Carbon Nanotubes. Nano Letters, 2009, 9, 2267-2272.	9.1	134
9	Observation of magnetic edge state in graphene nanoribbons. Physical Review B, 2010, 81, .	3.2	132
10	Phosphorus and phosphorus–nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. Nanoscale, 2011, 3, 1008-1013.	5.6	102
11	Controlling high coercivities of ferromagnetic nanowires encapsulated in carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 5906.	6.7	59
12	GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes. Scientific Reports, 2016, 5, 17902.	3.3	54
13	Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon, 2017, 115, 409-421.	10.3	49
14	Synthesis of ZnMn2O4 Nanoparticles by a Microwave-Assisted Colloidal Method and their Evaluation as a Gas Sensor of Propane and Carbon Monoxide. Sensors, 2018, 18, 701.	3.8	43
15	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	14.9	31
16	Two Sprayer CVD Synthesis of Nitrogen-doped Carbon Sponge-type Nanomaterials. Scientific Reports, 2018, 8, 2983.	3.3	29
17	Creation of Helical Vortices during Magnetization of Aligned Carbon Nanotubes Filled with Fe: Theory and Experiment. Physical Review Letters, 2005, 94, 216102.	7.8	28
18	Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes. Carbon, 2015, 84, 317-326.	10.3	27

#	Article	IF	CITATIONS
19	Synthesis, Characterization, and Sensor Applications of Spinel ZnCo2O4 Nanoparticles. Sensors, 2016, 16, 2162.	3.8	26
20	Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. RSC Advances, 2016, 6, 21954-21960.	3.6	24
21	Doping (10, 0)-Semiconductor Nanotubes with Nitrogen and Vacancy Defects. Materials Express, 2011, 1, 127-135.	0.5	22
22	Effect of pyrrolic-N defects on the capacitance and magnetization of nitrogen-doped multiwalled carbon nanotubes. Carbon, 2021, 183, 743-762.	10.3	22
23	Extended line defects in BN, GaN, and AlN semiconductor materials: Graphene-like structures. Chemical Physics Letters, 2016, 652, 73-78.	2.6	20
24	Nitrogen–phosphorus doped graphitic nano onion-like structures: experimental and theoretical studies. RSC Advances, 2021, 11, 2793-2803.	3.6	20
25	Nitrogen–Silicon Heterodoping of Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 8481-8490.	3.1	19
26	Effect of impurities on the electronic and magnetic properties of zinc oxide nanostructures. Chemical Physics Letters, 2010, 492, 82-88.	2.6	18
27	Efficient carbon nanotube sponges production boosted by acetone in CVD-Synthesis. Carbon, 2018, 135, 145-156.	10.3	18
28	Chloride functionalized carbon nanotube sponge: High charge capacity and high magnetic saturation. Carbon, 2020, 164, 324-336.	10.3	18
29	First-principles study of transition metal adsorbed on porphyrin-like motifs in pyrrolic nitrogen-doped carbon nanostructures. Carbon, 2017, 116, 381-390.	10.3	16
30	Tuning the electronic and magnetic properties of graphene nanoribbons through phosphorus doping and functionalization. Materials Chemistry and Physics, 2021, 265, 124450.	4.0	16
31	Synthesis, morphology, magnetic and electrochemical studies of nitrogen-doped multiwall carbon nanotubes fabricated using banded iron-formation as catalyst. Journal of Alloys and Compounds, 2020, 835, 155200.	5.5	15
32	Understanding the electrochemistry of armchair graphene nanoribbons containing nitrogen and oxygen functional groups: DFT calculations. Physical Chemistry Chemical Physics, 2020, 22, 4533-4543.	2.8	15
33	Spin-dependent band-gap driven by nitrogen and oxygen functional groups in zigzag graphene nanoribbons. Applied Surface Science, 2020, 521, 146435.	6.1	13
34	Micromagnetic simulation of iron nanorings. Journal of Magnetism and Magnetic Materials, 2005, 294, e1-e5.	2.3	12
35	Oxygenated Surface of Carbon Nanotube Sponges: Electroactivity and Magnetic Studies. ACS Omega, 2019, 4, 18011-18022.	3.5	12
36	Wrinkled Nitrogen-doped Carbon Belts. Scientific Reports, 2018, 8, 3546.	3.3	8

#	Article	IF	CITATIONS
37	Synthesis, characterization and cyclic voltammetry studies of helical carbon nanostructures produced by thermal decomposition of ethanol on Cu-foils. Carbon, 2019, 155, 469-482.	10.3	8
38	Sensors: Photosensor Device Based on Few‣ayered WS ₂ Films (Adv. Funct. Mater. 44/2013). Advanced Functional Materials, 2013, 23, 5510-5510.	14.9	7
39	Holey nitrogen-doped multiwalled carbon nanotubes from extended air oxidation at low-temperature. Applied Surface Science, 2020, 524, 146546.	6.1	6
40	The synthesis of sponge-type nitrogen-doped multiwall carbon nanotubes using ball-milled natural red-leptosol as catalyst precursor: A cycle voltammetry study. Carbon, 2022, 196, 510-524.	10.3	6
41	Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study. Applied Surface Science, 2016, 368, 191-197.	6.1	4
42	Furan and Pyran Functional Groups Driven the Surface of Nitrogenâ€Doped Nanofiber Sponges. ChemNanoMat, 2020, 6, 672-684.	2.8	4
43	Pyrrolic nitrogen-doped multiwall carbon nanotubes using ball-milled slag-SiC mixtures as a catalyst by aerosol assisted chemical vapor deposition. Materials Research Express, 2020, , .	1.6	4
44	Nâ€doped carbon nanotube sponges and their excellent lithium storage performances. Nano Select, 0, , .	3.7	4
45	Hybrid materials based on pyrrhotite, troilite, and few-layered graphitic nanostructures: Synthesis, characterization, and cyclic voltammetry studies. Applied Surface Science, 2021, 563, 150327.	6.1	4
46	Cobalt double-ring and double-dot structures: Magnetic properties. Physica B: Condensed Matter, 2016, 483, 62-68.	2.7	3
47	Nitrogen-doped carbon fiber sponges by using different nitrogen precursors: synthesis, characterization, and electrochemical activity. Materials Today Chemistry, 2019, 14, 100200.	3.5	3
48	Edge Chemistry of Armchair Graphene Nanoribbons Containing Sulfur Functional Groups: Towards an Understanding of the Spinâ€Dependent Electrochemistry. Advanced Theory and Simulations, 2020, 3, 1900219.	2.8	3
49	Three-dimensional Nanotube Networks and a New Horizon of Applications. , 2014, , 457-493.		2
50	Tailoring the structure of MoS2 using ball-milled MoO3 powders: hexagonal, triangular, and fullerene-like shapes. Nanotechnology, 2021, 32, 155605.	2.6	1
51	Nitrogen and Sulfur Incorporation into Graphene Oxide by Mechanical Process. Advanced Engineering Materials, 2021, 23, 2001444.	3.5	1
52	Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .		1
53	Unconventional Metallicity in Graphene Nanoribbons with Armchair Edges. Advanced Theory and Simulations, 0, , 2100392.	2.8	1

 $Nanoribbons: Nitrogen \hat{a} \\ \in \\ Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv.) \\ Tj ETQq0 \\ \underbrace{0.09}_{14.9} \\ rgBT \\ Overlock \\ 100 \\ rgBT \\$

54

#	Article	IF	CITATIONS
55	Nitrogen and Sulfur Incorporation into Graphene Oxide by Mechanical Process. Advanced Engineering Materials, 2021, 23, 2170015.	3.5	O