Xing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9096118/publications.pdf

Version: 2024-02-01

51 papers	661 citations	15 h-index	610775 24 g-index
51	51	51	353
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Design and Optimization of a New Magnetic-Geared Pole-Changing Hybrid Excitation Machine. IEEE Transactions on Industrial Electronics, 2017, 64, 9943-9952.	5.2	58
2	Design of a Novel Parallel-Hybrid-Excited Dual-PM Machine Based on Armature Harmonics Diversity for Electric Vehicle Propulsion. IEEE Transactions on Industrial Electronics, 2019, 66, 4209-4219.	5.2	53
3	Design of a Novel Parallel-Hybrid-Excited Vernier Reluctance Machine with Improved Utilization of Redundant Winding Harmonics. IEEE Transactions on Industrial Electronics, 2018, 65, 9056-9067.	5.2	44
4	A New Relieving-DC-Saturation Hybrid Excitation Vernier Machine for HEV Starter Generator Application. IEEE Transactions on Industrial Electronics, 2020, 67, 6342-6353.	5.2	41
5	A New Slot-PM Vernier Reluctance Machine With Enhanced Zero-Sequence Current Excitation for Electric Vehicle Propulsion. IEEE Transactions on Industrial Electronics, 2020, 67, 3528-3539.	5.2	35
6	Design and Optimization of a Novel Slot-PM-Assisted Variable Flux Reluctance Generator for Hybrid Electric Vehicles. IEEE Transactions on Energy Conversion, 2018, 33, 2102-2111.	3.7	34
7	Design of a Novel Consequent-Pole Transverse-Flux Machine With Improved Permanent Magnet Utilization. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	33
8	Design of a New Relieving-DC-Saturation Hybrid Reluctance Machine for Fault-Tolerant In-Wheel Direct Drive. IEEE Transactions on Industrial Electronics, 2020, 67, 9571-9581.	5.2	32
9	Torque Component Quantification and Design Guideline for Dual Permanent Magnet Vernier Machine. IEEE Transactions on Magnetics, 2019, 55, 1-5.	1.2	28
10	A New Modular Relieving-DC-Saturation Vernier Reluctance Machine Excited by Zero-Sequence Current for Electric Vehicle. IEEE Transactions on Magnetics, 2019, 55, 1-5.	1.2	26
11	Development of a Novel Transverse Flux Tubular Linear Machine With Parallel and Complementary PM Magnetic Circuit for Precision Industrial Processing. IEEE Transactions on Industrial Electronics, 2019, 66, 4945-4955.	5.2	21
12	Flux-Modulated Relieving-DC-Saturation Hybrid Reluctance Machine With Synthetic Slot-PM Excitation for Electric Vehicle In-Wheel Propulsion. IEEE Transactions on Industrial Electronics, 2021, 68, 6075-6086.	5. 2	21
13	Operation Principle and Torque Component Quantification of Short-Pitched Flux-Bidirectional-Modulation Machine. IEEE Access, 2019, 7, 136676-136685.	2.6	17
14	Design and Analysis of a New Brushless Electrically Excited Claw-Pole Generator for Hybrid Electric Vehicle. IEEE Transactions on Magnetics, 2018, 54, 1-5.	1.2	16
15	High-Efficiency WPT System for CC/CV Charging Based on Double-half-bridge Inverter Topology with Variable Inductors. IEEE Transactions on Power Electronics, 2021, , 1-1.	5.4	16
16	A Novel High-Order-Harmonic Winding Design Method for Vernier Reluctance Machine With DC Coils Across Two Stator Teeth. IEEE Transactions on Industrial Electronics, 2022, 69, 7696-7707.	5.2	16
17	A Novel Vernier Reluctance Machine Excited by Slot PMs and Zero-Sequence Current for Electric Vehicle. IEEE Transactions on Magnetics, 2019, 55, 1-5.	1.2	15
18	Sensitivity Analysis and Design Optimization of a New Hybrid-Excited Dual-PM Generator With Relieving-DC-Saturation Structure for Stand-Alone Wind Power Generation. IEEE Transactions on Magnetics, 2020, 56, 1-5.	1.2	12

#	Article	IF	CITATIONS
19	Efficiency Improvement of Dual-Receiver WPT Systems Based on Partial Power Processing Control. IEEE Transactions on Power Electronics, 2022, 37, 7456-7469.	5.4	12
20	Flux-Modulated Permanent Magnet Machines: Challenges and Opportunities. World Electric Vehicle Journal, 2021, 12, 13.	1.6	11
21	Comparative Analysis of Different Permanent Magnet Arrangements in a Novel Flux Modulated Electric Machine. IEEE Access, 2021, 9, 14437-14445.	2.6	11
22	A Novel Axial-Flux-Complementary Doubly Salient Machine With Boosted PM Utilization for Cost-Effective Direct-Drive Applications. IEEE Access, 2019, 7, 145970-145977.	2.6	8
23	A Novel Winding Switching Control Strategy for AC/DC Hybrid-Excited Wind Power Generator. IEEE Transactions on Magnetics, 2021, 57, 1-4.	1.2	6
24	Predictive-Pulse-Injection-Based Dual-Inverter Complementary Sensorless Drive for 12/10 DC Vernier Reluctance Machine. IEEE Transactions on Power Electronics, 2022, 37, 8369-8378.	5.4	6
25	Investigation of a New Hybrid Excitation Machine With Auxiliary Winding for Energy Recycling. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	5
26	Design and comparison of electrically excited double rotor flux switching motor drive systems for automotive applications. CES Transactions on Electrical Machines and Systems, 2018, 2, 191-199.	2.7	5
27	A Novel Dual-Structure Parallel Hybrid Excitation Machine for Electric Vehicle Propulsion. Energies, 2019, 12, 338.	1.6	5
28	Analysis and Design of a New Relieving-DC-Saturation Transverse-Flux Tubular Motor With Complementary Magnetic Circuit. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	5
29	Comparative Analysis and Optimization of Novel Pulse Injection Sensorless Drive Methods for Fault-Tolerant DC Vernier Reluctance Machine. IEEE Transactions on Power Electronics, 2022, 37, 13566-13576.	5.4	5
30	Design and optimization of yokeless magnetic gear with asymmetric Halbach permanent magnet array for electric vehicle powertrain. IET Renewable Power Generation, 2022, 16, 2223-2232.	1.7	5
31	Development of Dual Armature-Winding Four-Phase Variable Flux Reluctance Generator for Fault-Tolerant Capability Improvement. IEEE Transactions on Energy Conversion, 2022, 37, 598-611.	3.7	4
32	Comparative Research on Four-Phase Dual Armature-Winding Wound-Field Doubly Salient Generator With Distributed Field Magnetomotive Forces for High-Reliability Application. IEEE Access, 2021, 9, 12579-12591.	2.6	4
33	Novel DC-Saturation-Relieving Hybrid Reluctance Machine With Skewed Permanent Magnets for Electric Vehicle Propulsion. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	4
34	A Novel Winding Switching Control Strategy of a Consequent-Pole Ferrite-PM Hybrid-Excited Machine for Electric Vehicle Application. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	4
35	Torque Generation Mechanism and Performance Evaluation of a Dual-Sided PM Machine With Stator U-Shaped Magnets. IEEE Transactions on Industry Applications, 2022, 58, 250-260.	3.3	4
36	A Novel Slot-PM Assisted Complementary-Rotor Doubly Salient Machine With Enhanced Torque Performance. IEEE Transactions on Industrial Electronics, 2022, 69, 11499-11509.	5.2	4

#	Article	IF	CITATIONS
37	Overview of the Optimal Design of the Electrically Excited Doubly Salient Variable Reluctance Machine. Energies, 2022, 15, 228.	1.6	4
38	Quantitative Analysis of Hybrid-Excited Doubly Salient Machine With Subslot Bottom PMs and Its Comparative Study. IEEE Transactions on Industrial Electronics, 2023, 70, 4558-4569.	5.2	4
39	Novel Dual-Sided Permanent Magnet Machines with Different Stator Magnet Arrangements. , 2019, , .		3
40	A novel doublyâ€fed doublyâ€salient machine with DCâ€saturationâ€relieving structure for wind power generation. IET Renewable Power Generation, 2021, 15, 2042-2051.	1.7	3
41	Slot-PM-Assisted Hybrid Reluctance Generator With Self-Excited DC Source for Stand-Alone Wind Power Generation. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	3
42	A General Pattern of Assisted Flux Barriers for Design Optimization of an Asymmetric V-Shape Interior Permanent Magnet Machine. IEEE Transactions on Magnetics, 2022, 58, 1-4.	1.2	3
43	Reconstructing Saliency Effect in $12/10$ DC Vernier Reluctance Machine for Position-Sensorless Drive Aerospace Starter Generator Application. IEEE Transactions on Energy Conversion, 2022, , 1-1.	3.7	3
44	Fast Magnetic Field Approximation Method for Simulation of Coaxial Magnetic Gears Using Al. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2023, 4, 400-408.	3.0	3
45	A Novel Parallel-Excited Dual-PM Reluctance Machine With Enhanced Torque and Efficiency Performance. IEEE Transactions on Industrial Electronics, 2023, 70, 4583-4594.	5.2	3
46	Design and Analysis of a Ferrite-PM-Assisted Hybrid Reluctance Machine for Electric Vehicle Propulsion., 2021,,.		2
47	A novel double-rotor parallel hybrid-excitation machine for electric vehicle propulsion., 2016,,.		1
48	A novel coreless contra-rotating axial-flux machine for wind power applications. , 2016, , .		1
49	A Novel DC Bias Excited Machine with Integrated Winding. , 2019, , .		1
50	Emerging Hybrid Reluctance Motor Drives for Electric Propulsion. , 2020, , .		1
51	Design Method for Variable Frequency Brushless Synchronous Generators. Energies, 2022, 15, 2786.	1.6	O