
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9095586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part I, Reducing Reconstruction Bias. Microscopy and Microanalysis, 2022, 28, 338-349.	0.2	7
2	Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities. Nano Letters, 2022, 22, 319-327.	4.5	15
3	Nanoscale Mapping of Light Emission in Nanospade-Based InGaAs Quantum Wells Integrated on Si(100): Implications for Dual Light-Emitting Devices. ACS Applied Nano Materials, 2022, 5, 5508-5515.	2.4	0
4	Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part II. Uncertainty Intervals. Microscopy and Microanalysis, 2022, 28, 723-731.	0.2	3
5	Event-based hyperspectral EELS: towards nanosecond temporal resolution. Ultramicroscopy, 2022, 239, 113539.	0.8	13
6	Can Copper Nanostructures Sustain High-Quality Plasmons?. Nano Letters, 2021, 21, 2444-2452.	4.5	43
7	Mapping Modified Electronic Levels in the Moiré Patterns in MoS ₂ /WSe ₂ Using Low-Loss EELS. Nano Letters, 2021, 21, 4071-4077.	4.5	16
8	Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science, 2021, 372, 1181-1186.	6.0	56
9	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Microscopy and Microanalysis, 2021, 27, 320-321.	0.2	0
10	Correlative Luminescence and Absorption Spectroscopy from Monolayer WSe2 at the Nanoscale. Microscopy and Microanalysis, 2021, 27, 1470-1472.	0.2	0
11	Understanding transition metal dichalcogenide absorption line widths in electron energy loss spectroscopy. Microscopy and Microanalysis, 2021, 27, 1170-1172.	0.2	1
12	Time-resolved cathodoluminescence in an ultrafast transmission electron microscope. Applied Physics Letters, 2021, 119, .	1.5	15
13	Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science, 2021, 374, 621-625.	6.0	137
14	Nanoscale Modification of WS ₂ Trion Emission by Its Local Electromagnetic Environment. Nano Letters, 2021, 21, 10178-10185.	4.5	23
15	Carbonâ€Nanotubeâ€Supported Copper Polyphthalocyanine for Efficient and Selective Electrocatalytic CO ₂ Reduction to CO. ChemSusChem, 2020, 13, 173-179.	3.6	60
16	Spatial and spectral dynamics in STEM hyperspectral imaging using random scan patterns. Ultramicroscopy, 2020, 212, 112912.	0.8	17
17	Enhanced sputter and secondary ion yields using MeV gold nanoparticle beams delivered by the Andromede facility. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 044008.	0.6	2
18	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Letters, 2020, 20, 2973-2979.	4.5	36

#	Article	IF	CITATIONS
19	Electronic structure and optical properties of semiconductor nanowires polytypes. European Physical Journal B, 2020, 93, 1.	0.6	10
20	Spectromicroscopies électroniquesÂ: sonder les propriétés optiques de nanomatériaux avec des électrons rapides. Photoniques, 2020, , 39-43.	0.0	0
21	Low Loss EELS of Lateral MoS ₂ /WS ₂ Heterostructures. Microscopy and Microanalysis, 2019, 25, 640-641.	0.2	1
22	Solvothermally-synthesized tin-doped indium oxide plasmonic nanocrystals spray-deposited onto glass as near-infrared electrochromic films. Solar Energy Materials and Solar Cells, 2019, 200, 110014.	3.0	12
23	Visualizing Spatial Variations of Plasmon–Exciton Polaritons at the Nanoscale Using Electron Microscopy. Nano Letters, 2019, 19, 8171-8181.	4.5	77
24	Electroreduction of CO ₂ on Singleâ€Site Copperâ€Nitrogenâ€Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. Angewandte Chemie - International Edition, 2019, 58, 15098-15103.	7.2	369
25	High spectral resolution EELS to probe optics at the nanometer scale. Microscopy and Microanalysis, 2019, 25, 630-631.	0.2	0
26	The role of mobility in epidemic dynamics. Physica A: Statistical Mechanics and Its Applications, 2019, 526, 120663.	1.2	7
27	Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction. Nano Research, 2019, 12, 939-946.	5.8	3
28	Incorporation of Europium into GaN Nanowires by Ion Implantation. Journal of Physical Chemistry C, 2019, 123, 11874-11887.	1.5	12
29	Emergence of point defect states in a plasmonic crystal. Physical Review B, 2019, 100, .	1.1	5
30	Self-hybridization within non-Hermitian localized plasmonic systems. Nature Physics, 2018, 14, 360-364.	6.5	28
31	Probing Plasmon-NV ⁰ Coupling at the Nanometer Scale with Photons and Fast Electrons. ACS Photonics, 2018, 5, 324-328.	3.2	24
32	Monolayer and thin <i>h</i> –BN as substrates for electron spectro-microscopy analysis of plasmonic nanoparticles. Applied Physics Letters, 2018, 113, .	1.5	9
33	Optical gap and optically active intragap defects in cubic BN. Physical Review B, 2018, 98, .	1.1	22
34	New Directions Toward Nanophysics Experiments in STEM. Microscopy and Microanalysis, 2018, 24, 434-435.	0.2	3
35	Quantum Nanooptics in the Electron Microscope. Advances in Imaging and Electron Physics, 2017, 199, 185-235.	0.1	2
36	Interplay Between Cr Dopants and Vacancy Clustering in the Structural and Optical Properties of WSe ₂ . ACS Nano, 2017, 11, 11162-11168.	7.3	33

#	Article	IF	CITATIONS
37	Optical Spectroscopy at High Spatial Resolution with Fast Electrons. Microscopy and Microanalysis, 2017, 23, 1528-1529.	0.2	Ο
38	Nanocross: A Highly Tunable Plasmonic System. Journal of Physical Chemistry C, 2017, 121, 16521-16527.	1.5	10
39	Different growth regimes in InP nanowire growth mediated by Ag nanoparticles. Nanotechnology, 2017, 28, 505604.	1.3	5
40	Monochromated EELS to Probe the Local Optical Properties of Low-Dimensional Materials. Microscopy and Microanalysis, 2016, 22, 950-951.	0.2	0
41	Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature. Applied Physics Letters, 2016, 108, .	1.5	14
42	Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. Nanoscale, 2016, 8, 11588-11594.	2.8	29
43	Postsynthesis of hâ€BN/Graphene Heterostructures Inside a STEM. Small, 2016, 12, 252-259.	5.2	23
44	Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AIN quantum disks in nanowires. Physical Review B, 2016, 93, .	1.1	17
45	Lifetime Measurements Well below the Optical Diffraction Limit. ACS Photonics, 2016, 3, 1157-1163.	3.2	37
46	Bright UV Single Photon Emission at Point Defects in <i>h</i> -BN. Nano Letters, 2016, 16, 4317-4321.	4.5	321
47	Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield. Ultramicroscopy, 2016, 160, 239-246.	0.8	12
48	Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Physical Review Letters, 2015, 114, 107601.	2.9	79
49	Structure and Local Chemical Properties of Boron-Terminated Tetravacancies in Hexagonal Boron Nitride. Physical Review Letters, 2015, 114, 075502.	2.9	33
50	Interaction between lamellar twinning and catalyst dynamics in spontaneous core–shell InGaP nanowires. Nanoscale, 2015, 7, 12722-12727.	2.8	11
51	Core-Level Spectroscopy to Probe the Oxidation State of Single Europium Atoms. Physical Review Letters, 2015, 114, 197602.	2.9	12
52	Photon Bunching in Cathodoluminescence. Physical Review Letters, 2015, 114, 197401.	2.9	97
53	A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures. Applied Physics Letters, 2014, 105, 143106.	1.5	11
54	Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique, 2014, 15, 158-175.	0.3	43

#	Article	IF	CITATIONS
55	Single Molecular Spectroscopy: Identification of Individual Fullerene Molecules. Physical Review Letters, 2014, 113, 185502.	2.9	7
56	Nanometric Resolved Luminescence in h-BN Flakes: Excitons and Stacking Order. ACS Photonics, 2014, 1, 857-862.	3.2	80
57	Quantum nano optics of defect centers in diamond and h-BN with nano-cathodoluminescence. , 2014, , .		0
58	Measurement of the autocorrelation function of a cathodoluminescence signal: characteristics and applications in nanosecond time resolved and nanometer spatially resolved experiment. , 2014, , .		0
59	Spontaneous Periodic Diameter Oscillations in InP Nanowires: The Role of Interface Instabilities. Nano Letters, 2013, 13, 9-13.	4.5	32
60	Spatial modulation of above-the-gap cathodoluminescence in InP nanowires. Journal of Physics Condensed Matter, 2013, 25, 505303.	0.7	2
61	Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Physical Review Letters, 2013, 110, 153604.	2.9	88
62	Spatially and spectrally resolved cathodoluminescence with fast electrons: A tool for background subtraction in luminescence intensity secondâ€order correlation measurements applied to subwavelength inhomogeneous diamond nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2060-2065.	0.8	17
63	Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV ⁰ emission properties. Nanotechnology, 2012, 23, 175702.	1.3	53
64	Kinetic Effects in InP Nanowire Growth and Stacking Fault Formation: The Role of Interface Roughening. Nano Letters, 2011, 11, 1934-1940.	4.5	19
65	Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts. Nanotechnology, 2011, 22, 065703.	1.3	2
66	Enhanced Eshelby Twist on Thin Wurtzite InP Nanowires and Measurement of Local Crystal Rotation. Physical Review Letters, 2011, 107, 195503.	2.9	29
67	Characterization of interface abruptness and material properties in catalytically grown Ill–V nanowires: exploiting plasmon chemical shift. Nanotechnology, 2010, 21, 295701.	1.3	7
68	Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and <i>ab initio</i> calculations. Physical Review B, 2010, 82, .	1.1	60
69	Ill–V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?. Nanotechnology, 2009, 20, 275604.	1.3	15
70	Heterostructure interface roughness characterization by chemical mapping: Application to InGaP/GaAs quantum wells. Journal of Applied Physics, 2008, 104, 074311.	1.1	1