## Iwan Moreels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9095486/publications.pdf Version: 2024-02-01



IWAN MODEFIS

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano, 2009, 3, 3023-3030.                                                                                                                          | 7.3  | 1,024     |
| 2  | Composition and Size-Dependent Extinction Coefficient of Colloidal PbSe Quantum Dots. Chemistry of Materials, 2007, 19, 6101-6106.                                                                                      | 3.2  | 475       |
| 3  | Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano, 2011, 5, 2004-2012.                                                                                                             | 7.3  | 446       |
| 4  | Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells.<br>Nature Nanotechnology, 2014, 9, 891-895.                                                                                | 15.6 | 433       |
| 5  | Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide<br>Nanocrystals. ACS Nano, 2018, 12, 1704-1711.                                                                               | 7.3  | 395       |
| 6  | Surface Chemistry of Colloidal PbSe Nanocrystals. Journal of the American Chemical Society, 2008, 130, 15081-15086.                                                                                                     | 6.6  | 352       |
| 7  | Luminescence in Sulfides: A Rich History and a Bright Future. Materials, 2010, 3, 2834-2883.                                                                                                                            | 1.3  | 228       |
| 8  | Short-Chain Alcohols Strip X-Type Ligands and Quench the Luminescence of PbSe and CdSe Quantum<br>Dots, Acetonitrile Does Not. Journal of the American Chemical Society, 2012, 134, 20705-20712.                        | 6.6  | 221       |
| 9  | In Situ Observation of Rapid Ligand Exchange in Colloidal Nanocrystal Suspensions Using Transfer<br>NOE Nuclear Magnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2009, 131,<br>3024-3032.     | 6.6  | 190       |
| 10 | From Binary Cu <sub>2</sub> S to Ternary Cu–In–S and Quaternary Cu–In–Zn–S Nanocrystals with<br>Tunable Composition <i>via</i> Partial Cation Exchange. ACS Nano, 2015, 9, 521-531.                                     | 7.3  | 173       |
| 11 | Light absorption by colloidal semiconductor quantum dots. Journal of Materials Chemistry, 2012, 22, 10406.                                                                                                              | 6.7  | 153       |
| 12 | Probing the Wave Function Delocalization in CdSe/CdS Dot-in-Rod Nanocrystals by Time- and Temperature-Resolved Spectroscopy. ACS Nano, 2011, 5, 4031-4036.                                                              | 7.3  | 148       |
| 13 | Optical Properties of Zincblende Cadmium Selenide Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 6371-6376.                                                                                                  | 1.5  | 143       |
| 14 | Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets.<br>Physical Review B, 2015, 91, .                                                                                     | 1.1  | 143       |
| 15 | Synthesis of Uniform Disk-Shaped Copper Telluride Nanocrystals and Cation Exchange to Cadmium<br>Telluride Quantum Disks with Stable Red Emission. Journal of the American Chemical Society, 2013, 135,<br>12270-12278. | 6.6  | 138       |
| 16 | Chloride-Induced Thickness Control in CdSe Nanoplatelets. Nano Letters, 2018, 18, 6248-6254.                                                                                                                            | 4.5  | 135       |
| 17 | Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS<br>Energy Letters, 2019, 4, 1862-1871.                                                                                  | 8.8  | 125       |
| 18 | PbTe CdTe Core Shell Particles by Cation Exchange, a HR-TEM study. Chemistry of Materials, 2009, 21, 778-780.                                                                                                           | 3.2  | 121       |

| #  | Article                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Two Photon Absorption in Il–VI Semiconductors: The Influence of Dimensionality and Size. Nano Letters, 2015, 15, 4985-4992.                                                                                                                                                                                   | 4.5  | 120       |
| 20 | A sustainable future for photonic colloidal nanocrystals. Chemical Society Reviews, 2015, 44, 5897-5914.                                                                                                                                                                                                      | 18.7 | 115       |
| 21 | Epitaxially Connected PbSe Quantum-Dot Films: Controlled Neck Formation and Optoelectronic<br>Properties. ACS Nano, 2014, 8, 11499-11511.                                                                                                                                                                     | 7.3  | 114       |
| 22 | Nuclear Magnetic Resonance Spectroscopy Demonstrating Dynamic Stabilization of CdSe Quantum<br>Dots by Alkylamines. Journal of Physical Chemistry Letters, 2010, 1, 2577-2581.                                                                                                                                | 2.1  | 102       |
| 23 | Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength.<br>Chemistry of Materials, 2017, 29, 5671-5680.                                                                                                                                                                   | 3.2  | 96        |
| 24 | Solution-Processed Hybrid Graphene Flake/2H-MoS <sub>2</sub> Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution. Chemistry of Materials, 2017, 29, 5782-5786.                                                                                                                      | 3.2  | 93        |
| 25 | Shape control of zincblende CdSe nanoplatelets. Chemical Communications, 2016, 52, 11975-11978.                                                                                                                                                                                                               | 2.2  | 92        |
| 26 | In Situ1H NMR Study on the Trioctylphosphine Oxide Capping of Colloidal InP Nanocrystals.<br>ChemPhysChem, 2005, 6, 2578-2584.                                                                                                                                                                                | 1.0  | 91        |
| 27 | Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. Journal of Materials Chemistry C, 2014, 2, 3439.                                                                                                                                          | 2.7  | 90        |
| 28 | The Different Nature of Band Edge Absorption and Emission in Colloidal PbSe/CdSe Core/Shell<br>Quantum Dots. ACS Nano, 2011, 5, 58-66.                                                                                                                                                                        | 7.3  | 84        |
| 29 | Ligand Adsorption/Desorption on Sterically Stabilized InP Colloidal Nanocrystals: Observation and Thermodynamic Analysis. ChemPhysChem, 2006, 7, 1028-1031.                                                                                                                                                   | 1.0  | 81        |
| 30 | Nearly Temperatureâ€Independent Threshold for Amplified Spontaneous Emission in Colloidal CdSe/CdS<br>Quantum Dotâ€inâ€Rods. Advanced Materials, 2012, 24, OP231-5.                                                                                                                                           | 11.1 | 74        |
| 31 | Graphene-based technologies for energy applications, challenges and perspectives. 2D Materials, 2015, 2, 030204.                                                                                                                                                                                              | 2.0  | 74        |
| 32 | Singleâ€Mode Lasing from Colloidal Waterâ€Soluble CdSe/CdS Quantum Dotâ€inâ€Rods. Small, 2015, 11,<br>1328-1334.                                                                                                                                                                                              | 5.2  | 70        |
| 33 | High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal<br>Heterostructures with Polar Polymer Injecting Layers. Nano Letters, 2015, 15, 5455-5464.                                                                                                                       | 4.5  | 69        |
| 34 | <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math> -State Luminescence in<br>CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck.<br>Physical Review Letters, 2016, 116, 116802. | 2.9  | 68        |
| 35 | Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Solar Energy Materials and Solar Cells, 2018, 183, 1-7.                                                                                                                                          | 3.0  | 68        |
| 36 | Colloidal CsX (X = Cl, Br, I) Nanocrystals and Their Transformation to CsPbX <sub>3</sub><br>Nanocrystals by Cation Exchange. Chemistry of Materials, 2018, 30, 79-83.                                                                                                                                        | 3.2  | 67        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Krönig<br>analysis of the absorbance spectrum. Physical Review B, 2010, 81, .                                                             | 1.1 | 66        |
| 38 | Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes. Nature Communications, 2015, 6, 6434.                                                                                  | 5.8 | 66        |
| 39 | CuIn <sub><i>x</i></sub> Ga <sub>1–<i>x</i></sub> S <sub>2</sub> Nanocrystals with Tunable<br>Composition and Band Gap Synthesized via a Phosphine-Free and Scalable Procedure. Chemistry of<br>Materials, 2013, 25, 3180-3187. | 3.2 | 65        |
| 40 | Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals.<br>Nature Communications, 2015, 6, 7905.                                                                                     | 5.8 | 65        |
| 41 | Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and<br>Surface Silver Doping of CdSe Nanoplatelets. Chemistry of Materials, 2019, 31, 1450-1459.                               | 3.2 | 64        |
| 42 | Band-Edge Exciton Fine Structure of Small, Nearly Spherical Colloidal CdSe/ZnS Quantum Dots. ACS<br>Nano, 2011, 5, 8033-8039.                                                                                                   | 7.3 | 60        |
| 43 | Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting<br>CdSe/CdS Nanocrystals. ACS Nano, 2016, 10, 6877-6887.                                                                  | 7.3 | 57        |
| 44 | Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. ACS Nano, 2015, 9, 11886-11897.                                                                            | 7.3 | 53        |
| 45 | On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. Npj<br>2D Materials and Applications, 2019, 3, .                                                                                | 3.9 | 53        |
| 46 | Langmuir–Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence. Nanotechnology, 2010, 21, 295606.                                                                                   | 1.3 | 51        |
| 47 | The dielectric function of PbS quantum dots in a glass matrix. Optical Materials Express, 2012, 2, 496.                                                                                                                         | 1.6 | 49        |
| 48 | PbSe quantum dots: Finite, off-stoichiometric, and structurally distorted. Physical Review B, 2010, 81, .                                                                                                                       | 1.1 | 48        |
| 49 | Controlling the Exciton Fine Structure Splitting in CdSe/CdS Dot-in-Rod Nanojunctions. ACS Nano, 2012, 6, 1979-1987.                                                                                                            | 7.3 | 48        |
| 50 | Solution NMR techniques for investigating colloidal nanocrystal ligands: A case study on<br>trioctylphosphine oxide at InP quantum dots. Sensors and Actuators B: Chemical, 2007, 126, 283-288.                                 | 4.0 | 46        |
| 51 | Two-Photon-Induced Blue Shift of Core and Shell Optical Transitions in Colloidal CdSe/CdS<br>Quasi-Type II Quantum Rods. ACS Nano, 2013, 7, 2443-2452.                                                                          | 7.3 | 46        |
| 52 | Near-Infrared Cu–In–Se-Based Colloidal Nanocrystals via Cation Exchange. Chemistry of Materials,<br>2018, 30, 2607-2617.                                                                                                        | 3.2 | 45        |
| 53 | Efficient charge transfer in solution-processed PbS quantum dot–reduced graphene oxide hybrid<br>materials. Journal of Materials Chemistry C, 2015, 3, 7088-7095.                                                               | 2.7 | 43        |
| 54 | Strong Exciton–Photon Coupling with Colloidal Nanoplatelets in an Open Microcavity. Nano Letters,<br>2016, 16, 7137-7141.                                                                                                       | 4.5 | 42        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Near-Infrared Emitting Colloidal PbS Nanoplatelets: Lateral Size Control and Optical Spectroscopy.<br>Chemistry of Materials, 2017, 29, 2883-2889.                                                       | 3.2  | 42        |
| 56 | Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. Journal of Instrumentation, 2016, 11, P10015-P10015.                                                                       | 0.5  | 41        |
| 57 | Engineering the Spin–Flip Limited Exciton Dephasing in Colloidal CdSe/CdS Quantum Dots. ACS Nano,<br>2012, 6, 5227-5233.                                                                                 | 7.3  | 40        |
| 58 | Broadband Amplified Spontaneous Emission and Random Lasing from Wurtzite CdSe/CdS "Giant-Shell―<br>Nanocrystals. ACS Photonics, 2016, 3, 2083-2088.                                                      | 3.2  | 38        |
| 59 | Extending the Colloidal Transition Metal Dichalcogenide Library to ReS <sub>2</sub> Nanosheets for Application in Gas Sensing and Electrocatalysis. Small, 2019, 15, e1904670.                           | 5.2  | 38        |
| 60 | Colloidal Synthesis of Laterally Confined Blue-Emitting 3.5 Monolayer CdSe Nanoplatelets. Chemistry of Materials, 2020, 32, 9260-9267.                                                                   | 3.2  | 37        |
| 61 | Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale, 2020, 12, 14448-14458.                        | 2.8  | 37        |
| 62 | Composition-, Size-, and Surface Functionalization-Dependent Optical Properties of Lead Bromide<br>Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 2079-2085.                  | 2.1  | 37        |
| 63 | CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and<br>Multiphoton Fluorescence Upconversion. ACS Nano, 2020, 14, 4206-4215.                                       | 7.3  | 36        |
| 64 | Disentangling the Role of Shape, Ligands, and Dielectric Constants in the Absorption Properties of Colloidal CdSe/CdS Nanocrystals. ACS Photonics, 2016, 3, 58-67.                                       | 3.2  | 34        |
| 65 | Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals. Applied Physics<br>Letters, 2006, 89, 193106.                                                                             | 1.5  | 33        |
| 66 | Electrical control of single-photon emission in highly charged individual colloidal quantum dots.<br>Science Advances, 2020, 6, .                                                                        | 4.7  | 33        |
| 67 | Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. Nature Nanotechnology, 2020, 15, 277-282.                                                                        | 15.6 | 32        |
| 68 | Graphene-Based Hole-Selective Layers for High-Efficiency, Solution-Processed, Large-Area, Flexible,<br>Hydrogen-Evolving Organic Photocathodes. Journal of Physical Chemistry C, 2017, 121, 21887-21903. | 1.5  | 30        |
| 69 | Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability.<br>Nano Research, 2020, 13, 684-690.                                                               | 5.8  | 30        |
| 70 | Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light: Science and Applications, 2021, 10, 112.                         | 7.7  | 30        |
| 71 | Exciton Binding Energy in CdSe Nanoplatelets Measured by One- and Two-Photon Absorption. Nano<br>Letters, 2021, 21, 10525-10531.                                                                         | 4.5  | 27        |
| 72 | On the Interpretation of Colloidal Quantumâ€Đot Absorption Spectra. Small, 2008, 4, 1866-1868.                                                                                                           | 5.2  | 26        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Quantum Dot Micropatterning on Si. Langmuir, 2008, 24, 5961-5966.                                                                                                                                                                          | 1.6  | 25        |
| 74 | Piezoelectric Control of the Exciton Wave Function in Colloidal CdSe/CdS Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 2182-2188.                                                                                          | 2.1  | 25        |
| 75 | Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown<br>Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 3339-3344.                                                                 | 2.1  | 24        |
| 76 | A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based<br>2D and 0D nanocrystals. Nanoscale, 2019, 11, 3958-3967.                                                                                | 2.8  | 24        |
| 77 | Exciton Dynamics within the Band-Edge Manifold States: The Onset of an Acoustic Phonon Bottleneck.<br>Nano Letters, 2012, 12, 5224-5229.                                                                                                   | 4.5  | 23        |
| 78 | Langmuir–Blodgett monolayers of InP quantum dots with short chain ligands. Journal of Colloid and<br>Interface Science, 2006, 300, 597-602.                                                                                                | 5.0  | 21        |
| 79 | Exciton dephasing in lead sulfide quantum dots by <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mrow><mml:mi>X</mml:mi></mml:mrow>-point phonons. Physical<br/>Review B. 2011. 83</mml:math<br> | 1.1  | 21        |
| 80 | Energy transfer is speeded up in 2D. Nature Materials, 2015, 14, 464-465.                                                                                                                                                                  | 13.3 | 21        |
| 81 | Preferred Growth Direction by PbS Nanoplatelets Preserves Perovskite Infrared Light Harvesting for<br>Stable, Reproducible, and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2002422.                                       | 10.2 | 20        |
| 82 | Selfâ€Assembled Dense Colloidal Cu <sub>2</sub> Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent. Advanced Functional Materials, 2016, 26, 4535-4542.                                                                    | 7.8  | 19        |
| 83 | Size-dependent exciton substructure in CdSe nanoplatelets and its relation to photoluminescence dynamics. Nanoscale, 2019, 11, 12230-12241.                                                                                                | 2.8  | 19        |
| 84 | Rapid and robust control of single quantum dots. Light: Science and Applications, 2017, 6, e16239-e16239.                                                                                                                                  | 7.7  | 18        |
| 85 | Increasing responsivity and air stability of PbS colloidal quantum dot photoconductors with iodine surface ligands. Nanotechnology, 2019, 30, 405204.                                                                                      | 1.3  | 18        |
| 86 | Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm. Physical Review B, 2012, 85, .                                                             | 1.1  | 17        |
| 87 | Oxygen Sensitivity of Atomically Passivated CdS Nanocrystal Films. ACS Applied Materials &<br>Interfaces, 2014, 6, 9517-9523.                                                                                                              | 4.0  | 17        |
| 88 | Revisiting the Anion Framework Conservation in Cation Exchange Processes. Chemistry of Materials, 2016, 28, 7872-7877.                                                                                                                     | 3.2  | 15        |
| 89 | Four-wave-mixing imaging and carrier dynamics of PbS colloidal quantum dots. Physical Review B, 2010, 82, .                                                                                                                                | 1.1  | 13        |
| 90 | Solution-processed silver sulphide nanocrystal film for resistive switching memories. Journal of Materials Chemistry C, 2018, 6, 13128-13135.                                                                                              | 2.7  | 13        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Impact of the Bandâ€Edge Fine Structure on the Energy Transfer between Colloidal Quantum Dots.<br>Advanced Optical Materials, 2014, 2, 126-130.                             | 3.6 | 12        |
| 92  | Dye-Sensitized Ternary Copper Chalcogenide Nanocrystals: Optoelectronic Properties, Air Stability, and Photosensitivity. Chemistry of Materials, 2019, 31, 2443-2449.       | 3.2 | 12        |
| 93  | Core/Shell CdSe/CdS Boneâ€Shaped Nanocrystals with a Thick and Anisotropic Shell as Optical Emitters.<br>Advanced Optical Materials, 2020, 8, 1901463.                      | 3.6 | 12        |
| 94  | The non-linear refractive index of colloidal PbSe nanocrystals: Spectroscopy and saturation behaviour. Journal of Luminescence, 2006, 121, 369-374.                         | 1.5 | 11        |
| 95  | Two-photon based pulse autocorrelation with CdSe nanoplatelets. Nanoscale, 2019, 11, 17293-17300.                                                                           | 2.8 | 11        |
| 96  | Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 399-405. | 2.1 | 11        |
| 97  | Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose. Carbohydrate Polymers, 2016, 149, 217-223.                           | 5.1 | 10        |
| 98  | Ultrafast stimulated emission microscopy of single nanocrystals. Science, 2019, 366, 1240-1243.                                                                             | 6.0 | 10        |
| 99  | Band-edge oscillator strength of colloidal CdSe/CdS dot-in-rods: comparison of absorption and time-resolved fluorescence spectroscopy. Nanoscale, 2017, 9, 4730-4738.       | 2.8 | 9         |
| 100 | Van Hove Singularities and Trap States in Two-Dimensional CdSe Nanoplatelets. Nano Letters, 2021, 21, 1702-1708.                                                            | 4.5 | 9         |
| 101 | Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter. Journal of the Optical<br>Society of America B: Optical Physics, 2009, 26, 1243.                    | 0.9 | 7         |
| 102 | Ligands for Nanoparticles. , 2011, , 21-49.                                                                                                                                 |     | 7         |
| 103 | Synthesis of Anisotropic CdSe/CdS Dot-in-Giant-Rod Nanocrystals with Persistent Blue-Shifted Biexciton Emission. ACS Photonics, 2018, 5, 4561-4568.                         | 3.2 | 7         |
| 104 | Comment on "Size-Dependent Composition and Molar Extinction Coefficient of PbSe Semiconductor<br>Nanocrystals― ACS Nano, 2009, 3, 2053-2053.                                | 7.3 | 4         |
| 105 | Objective-free excitation of quantum emitters with a laser-written micro parabolic mirror. APL Photonics, 2020, 5, 071302.                                                  | 3.0 | 3         |
| 106 | Stimulated Emission through an Electron–Hole Plasma in Colloidal CdSe Quantum Rings. Nano<br>Letters, 2021, 21, 10062-10069.                                                | 4.5 | 3         |
| 107 | Semiconductor Nanostructures for Electronic and Optoâ€Electronic Device Applications. Physica<br>Status Solidi (A) Applications and Materials Science, 2020, 217, 2000065.  | 0.8 | 2         |
| 108 | Electrically Pumped QD Light Emission from LEDs to Lasers. Information Display, 2021, 37, 6-17.                                                                             | 0.1 | 2         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Semiconductor Nanostructures towards Electronic and Optoelectronic Device Applications. Physica<br>Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 193-194.                       | 0.8 | 1         |
| 110 | Let There Be Order, in Films of Colloidal CdSe 2D Nanocrystals. Nano Letters, 2020, 20, 2941-2942.                                                                                                  | 4.5 | 1         |
| 111 | InP-nanocrystal monolayer deposition onto silicon-on-insulator structures. , 2005, , .                                                                                                              |     | 0         |
| 112 | Solution NMR Spectroscopy as a Useful Tool to Investigate Colloidal Nanocrystal Dispersions from the Capping Ligand's Point of View. Materials Research Society Symposia Proceedings, 2006, 984, 1. | 0.1 | 0         |
| 113 | Ultrafast exciton dephasing in PbS colloidal quantum dots. , 2011, , .                                                                                                                              |     | 0         |
| 114 | Semiconductor nanostructures towards electronic and opto-electronic device applications V.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1365-1366.                  | 0.8 | 0         |
| 115 | Ligands for Nanoparticles. , 2016, , 171-200.                                                                                                                                                       |     | Ο         |
| 116 | Tuning the Optoelectronic Properties of Colloidal 2D Nanocrystals for Photonic and Energy Applications. , 0, , .                                                                                    |     | 0         |
| 117 | Gain Spectroscopy and Tunable Single Mode Lasing of Solution-Based Quantum Dots and<br>Nanoplatelets Using Tunable Open Microcavities. , 2016, , .                                                  |     | 0         |
| 118 | Spectral Dynamics of Linearly Polarized Bright Exciton in InP/ZnSe Colloidal Quantum Dots. , 0, , .                                                                                                 |     | 0         |
| 119 | Tunable Emission Fine Structure and Origin of Quadratic TPA in 2D CdSe Nanoplatelets. , 0, , .                                                                                                      |     | 0         |
| 120 | Silver Doping in Cadmium Chalcogenide Colloidal Nanoplatelets. , 0, , .                                                                                                                             |     | 0         |
| 121 | Ultrafast Stimulated Emission Microscopy of Single Nanocrystals. , 2020, , .                                                                                                                        |     | Ο         |
| 122 | Fluorescence Quantum Efficiency Enhancement in Size-Controlled 3.5 Monolayer Cadmium Telluride<br>Nanoplatelets. , 0, , .                                                                           |     | 0         |
| 123 | COLLOIDAL SYNTHESIS OF FLUORESCENT MoX2 (X = S, Se) NANOSHEETS VIA A DESIGN OF EXPERIMENTS APPROACH. , 0, , .                                                                                       |     | 0         |
| 124 | CROWN SIZE EFFECT on the LIGHT AMPLIFICATION FEATURES of CORE/CROWN (CdSe/CdS) NANOPLATELETS. , 0, , .                                                                                              |     | 0         |
| 125 | Colloidal Synthesis Of Fluorescent MoX2 (X = S, Se) Nanosheets Via a Design Of Experiments Approach.<br>, 0, , .                                                                                    |     | 0         |
| 126 | Disruptive Full Spectrum Optical Gain in Bulk-Like CdS/Se Quantum Dots through Strong Band Gap                                                                                                      |     | 0         |

**Renormalization.**, 0, , .

| #   | Article                                                                                           | IF | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------|----|-----------|
| 127 | Development of CdSe CdS core shell nanocrystals with near unity fluorescence efficiency. , 0, , . |    | 0         |