
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9095080/publications.pdf Version: 2024-02-01

HIDDEL HAISMA

#	Article	IF	CITATIONS
1	Apoptosis-Inducing TNF Superfamily Ligands for Cancer Therapy. Cancers, 2021, 13, 1543.	1.7	25
2	D-dopachrome tautomerase contributes to lung epithelial repair via atypical chemokine receptor 3-dependent Akt signaling. EBioMedicine, 2021, 68, 103412.	2.7	22
3	A next-generation sequencing method for gene doping detection that distinguishes low levels of plasmid DNA against a background of genomic DNA. Gene Therapy, 2019, 26, 338-346.	2.3	27
4	CX Chemokine Receptor 7 Contributes to Survival of KRAS-Mutant Non-Small Cell Lung Cancer upon Loss of Epidermal Growth Factor Receptor. Cancers, 2019, 11, 455.	1.7	18
5	A 6-alkylsalicylate histone acetyltransferase inhibitor inhibits histone acetylation and pro-inflammatory gene expression in murine precision-cut lung slices. Pulmonary Pharmacology and Therapeutics, 2017, 44, 88-95.	1.1	15
6	HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity. Biochemical Pharmacology, 2016, 108, 58-74.	2.0	105
7	Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection. Bioorganic and Medicinal Chemistry, 2013, 21, 7763-7778.	1.4	30
8	Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis <i>In Vitro</i> and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy <i>In Vivo</i> . Human Gene Therapy, 2013, 24, 807-813.	1.4	21
9	Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo. Journal of Controlled Release, 2013, 166, 57-65.	4.8	15
10	Gene doping: an overview and current implications for athletes. British Journal of Sports Medicine, 2013, 47, 670-678.	3.1	40
11	¹⁸ F-FEAnGA for PET of β-Glucuronidase Activity in Neuroinflammation. Journal of Nuclear Medicine, 2012, 53, 451-458.	2.8	26
12	In Vivo Evaluation of 1-O-(4-(2-Fluoroethyl-Carbamoyloxymethyl)-2-Nitrophenyl)-O-β-D-Glucopyronuronate: A Positron Emission Tomographic Tracer for Imaging β-Glucuronidase Activity in a Tumor/Inflammation Rodent Model. Molecular Imaging, 2012, 11, 7290.2011.00029.	0.7	9
13	Induction of β-Glucuronidase Release by Cytostatic Agents in Small Tumors. Molecular Pharmaceutics, 2012, 9, 3277-3285.	2.3	14
14	Anacardic acid derived salicylates are inhibitors or activators of lipoxygenases. Bioorganic and Medicinal Chemistry, 2012, 20, 5027-5032.	1.4	22
15	In vivo evaluation of [18F]FEAnGA-Me: a PET tracer for imaging β-glucuronidase (β-GUS) activity in a tumor/inflammation rodent model. Nuclear Medicine and Biology, 2012, 39, 854-863.	0.3	7
16	6-alkylsalicylates are selective Tip60 inhibitors and target the acetyl-CoA binding site. European Journal of Medicinal Chemistry, 2012, 47, 337-344.	2.6	112
17	Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy. Molecular Pharmaceutics, 2011, 8, 50-55.	2.3	22
18	Isothiazolones; thiol-reactive inhibitors of cysteine protease cathepsin B and histone acetyltransferase PCAF. Organic and Biomolecular Chemistry, 2011, 9, 1817.	1.5	19

#	Article	IF	CITATIONS
19	Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 2011, 151, 220-228.	4.8	1,278
20	Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation. Drug Discovery Today, 2011, 16, 504-511.	3.2	113
21	Antibodyâ€Free Detection of Protein Tyrosine Nitration in Tissue Sections. ChemBioChem, 2011, 12, 2016-2020.	1.3	21
22	Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorganic and Medicinal Chemistry, 2010, 18, 5826-5834.	1.4	75
23	Adenovirus retargeting to surface expressed antigens on oral mucosa. Journal of Gene Medicine, 2010, 12, 365-376.	1.4	12
24	Selective targeting of adenovirus to $\hat{l}\pm v\hat{l}^2$ 3 integrins, VEGFR2 and Tie2 endothelial receptors by angio-adenobodies. International Journal of Pharmaceutics, 2010, 391, 155-161.	2.6	21
25	Synthesis and Evaluation of [18F]-FEAnGA as a PET Tracer for β-Glucuronidase Activity. Bioconjugate Chemistry, 2010, 21, 911-920.	1.8	27
26	Histone acetyl transferases as emerging drug targets. Drug Discovery Today, 2009, 14, 942-948.	3.2	283
27	Reactivity of isothiazolones and isothiazolone-1-oxides in the inhibition of the PCAF histone acetyltransferase. European Journal of Medicinal Chemistry, 2009, 44, 4855-4861.	2.6	34
28	Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones. Bioorganic and Medicinal Chemistry, 2009, 17, 460-466.	1.4	48
29	Scavenger Receptor A: A New Route for Adenovirus 5. Molecular Pharmaceutics, 2009, 6, 366-374.	2.3	76
30	Secretion of thymidine kinase to increase the effectivity of suicide gene therapy results in the loss of enzymatic activity. Journal of Drug Targeting, 2008, 16, 26-35.	2.1	4
31	PDGF-Receptor Î ² -Targeted Adenovirus Redirects Gene Transfer from Hepatocytes to Activated Stellate Cells. Molecular Pharmaceutics, 2008, 5, 399-406.	2.3	26
32	Inhibition of Melanoma Growth by Targeting of Antigen to Dendritic Cells via an Anti-DEC-205 Single-Chain Fragment Variable Molecule. Clinical Cancer Research, 2008, 14, 8169-8177.	3.2	61
33	Potent Systemic Anticancer Activity of Adenovirally Expressed EGFR-Selective TRAIL Fusion Protein. Molecular Therapy, 2008, 16, 1919-1926.	3.7	29
34	Tumor-specific activation of prodrugs: is there a role for nuclear medicine?. Nuclear Medicine Communications, 2008, 29, 845-846.	0.5	2
35	Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. Journal of General Virology, 2008, 89, 1097-1105.	1.3	70
36	Fusion of herpes simplex virus thymidine kinase to VP22 does not result in intercellular trafficking of the protein. International Journal of Molecular Medicine, 2007, 19, 841-9.	1.8	6

#	Article	IF	CITATIONS
37	A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene Therapy, 2007, 14, 1695-1704.	2.3	27
38	Highly efficient and carcinoma-specific adenoviral replication restricted by the EGP-2 promoter. Journal of Controlled Release, 2007, 117, 1-10.	4.8	7
39	Functional inhibition of NF-kappaB signal transduction in alphavbeta3 integrin expressing endothelial cells by using RCD-PEC-modified adenovirus with a mutant lkappaB gene. Arthritis Research and Therapy, 2006, 8, R32.	1.6	26
40	Lymphangiogenic Growth Factor Responsiveness Is Modulated by Postnatal Lymphatic Vessel Maturation. American Journal of Pathology, 2006, 169, 708-718.	1.9	125
41	The carcinoma-specific epithelial glycoprotein-2 promoter controls efficient and selective gene expression in an adenoviral context. Cancer Gene Therapy, 2006, 13, 150-158.	2.2	11
42	Employment of liver tissue slice analysis to assay hepatotoxicity linked to replicative and nonreplicative adenoviral agents. Cancer Gene Therapy, 2006, 13, 606-618.	2.2	21
43	Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecologic Oncology, 2006, 100, 521-532.	0.6	32
44	Towards a double controlled conditionally replicative adenovirus for potent and specific melanoma cell kill. Journal of Controlled Release, 2006, 116, e64-e66.	4.8	0
45	Anex vivo human model system to evaluate specificity of replicating and non-replicating gene therapy agents. Journal of Gene Medicine, 2006, 8, 35-41.	1.4	31
46	Step into the Groove: Engineered Transcription Factors as Modulators of Gene Expression. Advances in Genetics, 2006, 56, 131-161.	0.8	12
47	Adenoviral vector-mediated expression of a gene encoding secreted, EpCAM-targeted carboxylesterase-2 sensitises colon cancer spheroids to CPT-11. British Journal of Cancer, 2005, 92, 882-887.	2.9	23
48	Prostate specific membrane antigen (PSMA) is a tissue-specific target for adenoviral transduction of prostate cancer in vitro. Prostate, 2005, 62, 253-259.	1.2	23
49	Evaluation of tumor-specific promoter activities in melanoma. Gene Therapy, 2005, 12, 330-338.	2.3	51
50	Adenovirus-Mediated Gene Transfer of Placental Growth Factor to Perivascular Tissue Induces Angiogenesis via Upregulation of the Expression of Endogenous Vascular Endothelial Growth Factor-A. Human Gene Therapy, 2005, 16, 1422-1428.	1.4	57
51	Engineering Zinc Finger Protein Transcription Factors: The Therapeutic Relevance of Switching Endogenous Gene Expression On or Off at Command. Journal of Molecular Biology, 2005, 354, 507-519.	2.0	55
52	153. VEGF Associated with TP To Refine Angiogenesis in Gene Therapy. Molecular Therapy, 2004, 9, S58-S59.	3.7	1
53	Pronounced Antitumor Efficacy by Extracellular Activation of a Doxorubicin-Glucuronide Prodrug After Adenoviral Vector-Mediated Expression of a Human Antibody-Enzyme Fusion Protein. Human Gene Therapy, 2004, 15, 229-238.	1.4	15
54	A Novel Ex vivo Model System for Evaluation of Conditionally Replicative Adenoviruses Therapeutic Efficacy and Toxicity. Clinical Cancer Research, 2004, 10, 8697-8703.	3.2	71

#	Article	IF	CITATIONS
55	Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma. Gynecologic Oncology, 2004, 94, 352-362.	0.6	28
56	A methylester of the glucuronide prodrug DOX-GA3 for improvement of tumor-selective chemotherapy. Biochemical Pharmacology, 2004, 68, 2273-2281.	2.0	29
57	Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology, 2004, 39, 1563-1573.	3.6	207
58	A Novel Strategy to Modify Adenovirus Tropism and Enhance Transgene Delivery to Activated Vascular Endothelial CellsIn VitroandIn Vivo. Human Gene Therapy, 2004, 15, 433-443.	1.4	124
59	Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharmaceutical Research, 2003, 20, 423-428.	1.7	39
60	Cytosolic β-glycosidases for activation of glycoside prodrugs of daunorubicin. Biochemical Pharmacology, 2003, 65, 1875-1881.	2.0	16
61	Targeted cancer gene therapy: the flexibility of adenoviral gene therapy vectors. Journal of Controlled Release, 2003, 87, 159-165.	4.8	42
62	Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on CAR-deficient tumors. Gene Therapy, 2003, 10, 1982-1991.	2.3	71
63	Resistance of rat hepatocytes against bile acid-induced apoptosis in cholestatic liver injury is due to nuclear factor-kappa B activation. Journal of Hepatology, 2003, 39, 153-161.	1.8	128
64	Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Research, 2003, 31, 6064-6078.	6.5	84
65	Protein Transduction Domains and their Utility in Gene Therapy. Current Gene Therapy, 2003, 3, 486-494.	0.9	48
66	A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug. British Journal of Cancer, 2002, 86, 811-818.	2.9	32
67	Secreted and tumour targeted human carboxylesterase for activation of irinotecan. British Journal of Cancer, 2002, 87, 659-664.	2.9	35
68	Efficient and Selective Gene Transfer into Primary Human Brain Tumors by Using Single-Chain Antibody-Targeted Adenoviral Vectors with Native Tropism Abolished. Journal of Virology, 2002, 76, 2753-2762.	1.5	88
69	Effective single chain antibody (scFv) concentrations in vivo via adenoviral vector mediated expression of secretory scFv. Gene Therapy, 2002, 9, 256-262.	2.3	37
70	Prolonged Maturation and Enhanced Transduction of Dendritic Cells Migrated from Human Skin Explants After In Situ Delivery of CD40-Targeted Adenoviral Vectors. Journal of Immunology, 2002, 169, 5322-5331.	0.4	66
71	Beta-Glucuronidase-Mediated Drug Release. Current Pharmaceutical Design, 2002, 8, 1391-1403.	0.9	138
72	Epidermal growth factor receptor targeting enhances adenoviral vector based suicide gene therapy of osteosarcoma. Journal of Gene Medicine, 2002, 4, 510-516.	1.4	47

HIDDE J. HAISMA

#	Article	IF	CITATIONS
73	Pronounced antitumor efficacy of doxorubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody ?-glucuronidase conjugate. International Journal of Cancer, 2001, 91, 550-554.	2.3	55
74	A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. British Journal of Cancer, 2001, 84, 550-557.	2.9	66
75	Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Therapy, 2001, 8, 342-351.	2.2	71
76	Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Therapy, 2000, 7, 901-904.	2.2	145
77	Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Therapy, 2000, 7, 1940-1946.	2.3	85
78	A rapid and versatile method for harnessing scFv antibody fragments with various biological effector functions. Journal of Immunological Methods, 2000, 237, 131-145.	0.6	22
79	Novel anthracycline-spacer-β-glucuronide, -β-glucoside, and -β-galactoside prodrugs for application in selective chemotherapy. Bioorganic and Medicinal Chemistry, 1999, 7, 1597-1610.	1.4	66
80	Tumor-specific gene transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM. Gene Therapy, 1999, 6, 1469-1474.	2.3	104
81	Transductional targeting of adenoviral vectors to prostate cancer in vitro. Prostate Cancer and Prostatic Diseases, 1999, 2, S5-S5.	2.0	1
82	Distribution and pharmacokinetics of the prodrug daunorubicin-GA3 in nude mice bearing human ovarian cancer xenografts. Biochemical Pharmacology, 1999, 57, 673-680.	2.0	18
83	Cationic polymeric gene delivery of β-glucuronidase for doxorubicin prodrug therapy. Journal of Gene Medicine, 1999, 1, 407-414.	1.4	20
84	The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts. British Journal of Cancer, 1998, 78, 1600-1606.	2.9	30
85	Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs. Advanced Drug Delivery Reviews, 1997, 24, 225-231.	6.6	17
86	Synthesis and biological activity of β-glucuronyl carbamate-based prodrugs of paclitaxel as potential candidates for ADEPT. Bioorganic and Medicinal Chemistry, 1997, 5, 405-414.	1.4	60
87	Determination of tumor-related factors of influence on the uptake of the monoclonal antibody 323/A3 in experimental human ovarian cancer. International Journal of Cancer, 1997, 71, 237-245.	2.3	7
88	Improved Characteristics of a Human β-Glucuronidaseâ^'Antibody Conjugate after Deglycosylation for Use in Antibody-Directed Enzyme Prodrug Therapy. Bioconjugate Chemistry, 1996, 7, 606-611.	1.8	21
89	A facile method for the labeling of proteins with zirconium isotopes. Nuclear Medicine and Biology, 1996, 23, 439-448.	0.3	55
90	Characterization of novel anthracycline prodrugs activated by human β-glucuronidase for use in antibody-directed enzyme prodrug therapy. Biochemical Pharmacology, 1996, 52, 455-463.	2.0	56

#	Article	IF	CITATIONS
91	Immunoliposomes as enzyme-carriers (immuno-enzymosomes) for antibody-directed enzyme prodrug therapy (ADEPT): optimization of prodrug activating capacity. Pharmaceutical Research, 1996, 13, 604-610.	1.7	36
92	Comparison of the monoclonal antibodies 17-1A and 323/A3: the influence of the affinity on tumour uptake and efficacy of radioimmunotherapy in human ovarian cancer xenografts. British Journal of Cancer, 1996, 73, 457-464.	2.9	28
93	Synthesis and evaluation of novel daunomycin-phosphate-sulfate -β-glucuronide and -β-glucoside prodrugs for application in adept. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 2975-2980.	1.0	17
94	β-Glucuronyl carbamate based pro-moieties designed for prodrugs in ADEPT. Tetrahedron Letters, 1995, 36, 1701-1704.	0.7	26
95	Minor human antibody response to a mouse and chimeric monoclonal antibody after a single i.v. infusion in ovarian carcinoma patients: a comparison of five assays. Cancer Immunology, Immunotherapy, 1995, 40, 24-30.	2.0	0
96	Comparison of non-invasive approaches to red marrow dosimetry for radiolabelled monoclonal antibodies. European Journal of Nuclear Medicine and Molecular Imaging, 1994, 21, 216-222.	2.2	11
97	Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Applied Radiation and Isotopes, 1994, 45, 1143-1147.	0.7	94
98	A new application for liposomes in cancer therapy. FEBS Letters, 1993, 336, 485-490.	1.3	47
99	A monoclonal antibody-β-glucuronidase conjugate as activator of the prodrug epirubicin-glucuronide for specific treatment of cancer. British Journal of Cancer, 1992, 66, 474-478.	2.9	100
100	Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies directed against intracellular antigens. Journal of Immunological Methods, 1992, 154, 55-60.	0.6	2
101	Analysis of a conjugate between anti-carcinoembryonic antigen monoclonal antibody and alkaline phosphatase for specific activation of the prodrug etoposide phosphate. Cancer Immunology, Immunotherapy, 1992, 34, 343-348.	2.0	32
102	Tumour localisation with 1311-labelled human IgM monoclonal antibody 16.88 in advanced colorectal cancer patients. European Journal of Cancer & Clinical Oncology, 1991, 27, 1430-1436.	0.9	14
103	The effects of γ-interferon combined with 5-fluorouracil or 5-fluoro-2′-deoxyuridine on proliferation and antigen expression in a panel of human colorectal cancer cell lines. International Journal of Cancer, 1991, 48, 749-756.	2.3	36
104	Localization and imaging of radiolabelled monoclonal antibody against squamous-cell carcinoma of the head and neck in tumor-bearing nude mice. International Journal of Cancer, 1989, 44, 534-538.	2.3	22
105	Localization of radiolabelled F(ab′)2 fragments of monoclonal antibodies in nude mice bearing intraperitoneally growing human ovarian cancer xenografts. International Journal of Cancer, 1988, 42, 368-372.	2.3	15
106	An assay for the detection of human anti-murine immunoglubulins in the presence of CA125 antigen. Journal of Immunological Methods, 1988, 106, 1-6.	0.6	20
107	Distribution and pharmacokinetics of radiolabeled monoclonal antibody OC 125 after intravenous and intraperitoneal administration in gynecologic tumors. American Journal of Obstetrics and Gynecology, 1988, 159, 843-848.	0.7	18
108	Antibody-antigen complex formation following injection of OC125 monoclonal antibody in patients with ovarian cancer. International Journal of Cancer, 1987, 40, 758-762.	2.3	20

#	Article	IF	CITATIONS
109	Higher ADCC of murine peritoneal cells after immunization with allogenic tumor cells as compared with stimulation by adriamycin, BCG, and thioglycolate. Cellular Immunology, 1986, 101, 454-462.	1.4	1
110	Specific localization of In-111-labeled monoclonal antibody versus 67-Ga-labeled immunoglobulin in mice bearing human breast carcinoma xenografts. Cancer Immunology, Immunotherapy, 1984, 17, 62-65	2.0	19

mice bearing human breast carcinoma xenografts. Cancer Immunology, Immunotherapy, 1984, 17, 62-65. 110