Durga P Acharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/909502/publications.pdf

Version: 2024-02-01

46 papers 2,241 citations

28 h-index 243625 44 g-index

46 all docs

46 docs citations

46 times ranked 1817 citing authors

#	Article	IF	CITATIONS
1	Underlying solvent-based factors that influence permanent porosity in porous liquids. Nano Research, 2022, 15, 3533-3538.	10.4	8
2	Enhanced Membrane Performance for Gas Separation by Coupling Effect of the Porous Aromatic Framework (PAF) Incorporation and Photo-Oxidation. Industrial & Engineering Chemistry Research, 2022, 61, 6190-6199.	3.7	6
3	Thermal, structural and dynamic properties of ionic liquids and organic ionic plastic crystals with a small ether-functionalised cation. Materials Chemistry Frontiers, 2022, 6, 1437-1455.	5.9	8
4	Underlying Polar and Nonpolar Modification MOF-Based Factors that Influence Permanent Porosity in Porous Liquids. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23392-23399.	8.0	11
5	Scalable Pillar[5]arene-Integrated Poly(arylate-amide) Molecular Sieve Membranes to Separate Light Gases. Chemistry of Materials, 2022, 34, 6559-6567.	6.7	7
6	Synthesis and characterisation of monolithic <scp>PTFE</scp> â€modified <scp>MnO_X</scp> / <scp>FeO_X</scp> catalysts for selective catalytic reduction (<scp>SCR</scp>) of <scp>NO_X</scp> at low temperature. Journal of Chemical Technology and Biotechnology, 2021, 96, 1016-1029.	3.2	5
7	An unusually stable solid state Ag AgCl reference electrode for long term continuous measurements based on a crosslinked poly(vinyl acetate)/KCl composite. Electrochimica Acta, 2021, 368, 137636.	5.2	10
8	Low temperature <scp>SCR</scp> of <scp>NO_x</scp> over Mn/Fe mixed oxides catalyst: comparison of synthesis methods. Journal of Chemical Technology and Biotechnology, 2021, 96, 2681-2695.	3.2	6
9	Sewage concentration via a graphene oxide modified thin-film nanocomposite forward osmosis membrane: Enhanced performance and mitigated fouling. Chemical Engineering Journal, 2021, 420, 127718.	12.7	17
10	Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicology Research, 2014, 3, 11-22.	2.1	111
11	Nitroxide-Loaded Hexosomes Provide MRI Contrast in Vivo. Langmuir, 2014, 30, 8898-8906.	3.5	43
12	Binding of resveratrol with sodium caseinate in aqueous solutions. Food Chemistry, 2013, 141, 1050-1054.	8.2	108
13	Unusual Sydney dust storm and its mineralogical and organic characteristics. Environmental Chemistry, 2012, 9, 537.	1.5	28
14	Cubic mesophase nanoparticles doped with superparamagnetic iron oxide nanoparticles: a new class of MRI contrast agent. RSC Advances, 2012, 2, 6655.	3.6	22
15	Progress in microemulsion characterization. Current Opinion in Colloid and Interface Science, 2012, 17, 274-280.	7.4	121
16	Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxide-based nanoparticles. Biomaterials, 2012, 33, 2723-2733.	11.4	75
17	Superâ€Stable Nonaqueous Foams in Diglycerol Fatty Acid Estersâ€"Non Polar Oil Systems. Journal of Dispersion Science and Technology, 2007, 28, 133-142.	2.4	33
18	Viscoelastic Micellar Solutions in a Mixed Nonionic Fluorinated Surfactants System and the Effect of Oils. Langmuir, 2007, 23, 5324-5330.	3.5	40

#	Article	IF	CITATIONS
19	Effect of temperature on the rheology of wormlike micelles in a mixed surfactant system. Journal of Colloid and Interface Science, 2007, 315, 330-336.	9.4	44
20	Phase Behavior of Pentaglycerol Monostearic and Monooleic Acid Esters in Water. Journal of Dispersion Science and Technology, 2006, 27, 99-103.	2.4	15
21	Phase Behavior of Monoglycerol Fatty Acid Esters in Nonpolar Oils:Â Reverse Rodlike Micelles at Elevated Temperatures. Journal of Physical Chemistry B, 2006, 110, 12266-12273.	2.6	70
22	Oilâ€Induced Structural Change of Wormlike Micelles in Sugar Surfactant Systems. Journal of Dispersion Science and Technology, 2006, 27, 611-616.	2.4	56
23	Phase Behavior of Diglycerol Fatty Acid Estersâ^'Nonpolar Oil Systems. Langmuir, 2006, 22, 1449-1454.	3.5	70
24	Viscoelastic Micellar Solutions in Nonionic Fluorinated Surfactant Systems. Journal of Physical Chemistry B, 2006, 110, 20224-20234.	2.6	39
25	Effect of Added Poly(oxyethylene)dodecyl Ether on the Phase and Rheological Behavior of Wormlike Micelles in Aqueous SDS Solutions. Journal of Physical Chemistry B, 2006, 110, 754-760.	2.6	84
26	Wormlike micelles in mixed surfactant solutions. Advances in Colloid and Interface Science, 2006, 123-126, 401-413.	14.7	178
27	Phase behavior and surface tensions of amphiphilic fluorinated random copolymer aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280, 140-145.	4.7	17
28	Aqueous foam stabilized by dispersed surfactant solid and lamellar liquid crystalline phase. Journal of Colloid and Interface Science, 2006, 301, 274-281.	9.4	56
29	Effect of C12EOn mixed surfactant systems on the formation of viscoelastic worm-like micellar solutions in sucrose alkanoate– and CTAB–water systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279, 113-120.	4.7	40
30	Structure and rheology of direct and reverse liquid-crystal phases in a block copolymer/water/oil system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269, 59-66.	4.7	54
31	Interfacial properties and foam stability effect of novel gemini-type surfactants in aqueous solutions. Journal of Colloid and Interface Science, 2005, 291, 236-243.	9.4	96
32	Phase Behavior of Polyoxyethylene Phytosterol/Polyoxyethylene Dodecylether/Water Systems. Journal of Oleo Science, 2005, 54, 7-13.	1.4	17
33	Effect of Nonionic Head Group Size on the Formation of Worm-Like Micelles in Mixed Nonionic/Cationic Surfactant Aqueous Systems. Journal of Chemical Engineering of Japan, 2004, 37, 622-629.	0.6	32
34	Phase behavior of poly(oxyethylene) cholesteryl ether/novel alkanolamide/water systems. Journal of Colloid and Interface Science, 2004, 277, 235-242.	9.4	27
35	Phase Behavior and Self-Organized Structures in Water/Poly(oxyethylene) Cholesteryl Ether Systems. Journal of Physical Chemistry B, 2004, 108, 12927-12939.	2.6	70
36	Formation and Disruption of Viscoelastic Wormlike Micellar Networks in the Mixed Surfactant Systems of Sucrose Alkanoate and Polyoxyethylene Alkyl Ether. Journal of Physical Chemistry B, 2004, 108, 14009-14016.	2.6	66

3

#	Article	IF	CITATIONS
37	Phase and rheological behaviour of viscoelastic wormlike micellar solutions formed in mixed nonionic surfactant systems. Physical Chemistry Chemical Physics, 2004, 6, 1627-1631.	2.8	77
38	Phase and Rheological Behavior of Novel Gemini-Type Surfactant Systems. Journal of Physical Chemistry B, 2004, 108, 1790-1797.	2.6	104
39	The lyotropic ribbon phase and its transformation to the lamellar phase in the potassium N-dodecanoyl-dl-alaninate/water/decanol system. , 2004, , 25-29.		0
40	Rheological Behavior of Wormlike Micellar Solutions in Mixed Nonionic Systems of Polyoxyethylene Phytosterol-Polyoxyethylene Dodecyl Ether. Journal of Oleo Science, 2004, 53, 599-606.	1.4	40
41	Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems. Journal of Colloid and Interface Science, 2003, 262, 500-505.	9.4	40
42	Phase and Rheological Behavior of Salt-Free Alkyltrimethylammonium Bromide/Alkanoyl-N-methylethanolamide/Water Systems. Langmuir, 2003, 19, 9173-9178.	3.5	89
43	Phase and Rheological Behavior of Surfactant/Novel Alkanolamide/Water Systems. Langmuir, 2003, 19, 8692-8696.	3.5	57
44	Formation of Viscoelastic Wormlike Micellar Solutions in Mixed Nonionic Surfactant Systems. Journal of Physical Chemistry B, 2003, 107, 10168-10175.	2.6	130
45	Phase Behavior and Effect of Enantiomerism on Potassium N -Dodecanoyl Alaninate/Water/Decanol Systems. Journal of Oleo Science, 2003, 52, 407-420.	1.4	14
46	Micellar Solutions, Worm-Like: Phase and Rheological Behaviors. , 0, , 4313-4329.		0