
Ivo Stassen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9094959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science, 2014, 343, 66-69.	6.0	1,061
2	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	18.7	987
3	Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 7136-7144.	6.6	625
4	Chemical vapour deposition of zeolitic imidazolate framework thinÂfilms. Nature Materials, 2016, 15, 304-310.	13.3	528
5	Stress-Induced Chemical Detection Using Flexible Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 14404-14405.	6.6	469
6	Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metalâ^'Organic Framework. Chemistry of Materials, 2010, 22, 4120-4122.	3.2	459
7	A Roadmap to Implementing Metal–Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry - A European Journal, 2011, 17, 11372-11388.	1.7	403
8	Silver Cluster Formation, Dynamics, and Chemistry in Metalâ^'Organic Frameworks. Nano Letters, 2009, 9, 3413-3418.	4.5	245
9	Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Advanced Materials, 2015, 27, 3453-3459.	11.1	227
10	Single Crystals of Electrically Conductive Two-Dimensional Metal–Organic Frameworks: Structural and Electrical Transport Properties. ACS Central Science, 2019, 5, 1959-1964.	5.3	211
11	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
12	Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 2017, 8, 3939-3948.	3.7	177
13	Kinetics and mechanism of metal–organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes. Chemical Science, 2012, 3, 1531.	3.7	169
14	Mechanical Properties in Metal–Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications. Advanced Materials, 2018, 30, e1704124.	11.1	165
15	Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap. Chemistry of Materials, 2015, 27, 1801-1807.	3.2	159
16	A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity. Joule, 2017, 1, 168-177.	11.7	159
17	Novel metal–organic framework linkers for light harvesting applications. Chemical Science, 2014, 5, 2081-2090.	3.7	152
18	Guest-Induced Emergent Properties in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2015, 6, 1182-1195.	2.1	150

#	Article	IF	CITATIONS
19	Force Field Validation for Molecular Dynamics Simulations of IRMOF-1 and Other Isoreticular Zinc Carboxylate Coordination Polymers. Journal of Physical Chemistry C, 2008, 112, 5795-5802.	1.5	142
20	Solvent-free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors. CrystEngComm, 2013, 15, 9308.	1.3	124
21	Improving the mechanical stability of zirconium-based metal–organic frameworks by incorporation of acidic modulators. Journal of Materials Chemistry A, 2015, 3, 1737-1742.	5.2	116
22	Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nature Materials, 2021, 20, 93-99.	13.3	112
23	Ultrasensitive Humidity Detection Using Metal–Organic Framework-Coated Microsensors. Analytical Chemistry, 2012, 84, 7043-7051.	3.2	111
24	Towards metal–organic framework based field effect chemical sensors: UiO-66-NH ₂ for nerve agent detection. Chemical Science, 2016, 7, 5827-5832.	3.7	108
25	Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nature Communications, 2019, 10, 3729.	5.8	106
26	Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation. Journal of Materials Chemistry A, 2014, 2, 3389-3398.	5.2	100
27	Waste PET (bottles) as a resource or substrate for MOF synthesis. Journal of Materials Chemistry A, 2016, 4, 9519-9525.	5.2	100
28	Green synthesis of zirconium-MOFs. CrystEngComm, 2015, 17, 4070-4074.	1.3	85
29	Metallic Metal–Organic Frameworks Predicted by the Combination of Machine Learning Methods and Ab Initio Calculations. Journal of Physical Chemistry Letters, 2018, 9, 4562-4569.	2.1	84
30	MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework. Journal of Physical Chemistry C, 2017, 121, 4816-4824.	1.5	83
31	Vaporâ€Phase Deposition and Modification of Metal–Organic Frameworks: Stateâ€ofâ€theâ€Art and Future Directions. Chemistry - A European Journal, 2016, 22, 14452-14460.	1.7	81
32	Chemiresistive Sensing of Ambient CO ₂ by an Autogenously Hydrated Cu ₃ (hexaiminobenzene) ₂ Framework. ACS Central Science, 2019, 5, 1425-1431.	5.3	79
33	High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu ₃ BTC ₂ micropores. Chemical Science, 2018, 9, 7405-7412.	3.7	73
34	Unraveling the Semiconducting/Metallic Discrepancy in Ni ₃ (HITP) ₂ . Journal of Physical Chemistry Letters, 2018, 9, 481-486.	2.1	70
35	Proposed Modification of the Graphene Analogue Ni ₃ (HITP) ₂ To Yield a Semiconducting Material. Journal of Physical Chemistry C, 2016, 120, 15001-15008.	1.5	67
36	Detailed spectral studies of copper acetate: excited-state interactions in copper dimers. Journal of the American Chemical Society, 1989, 111, 4009-4021.	6.6	64

#	Article	IF	CITATIONS
37	Ordered metal nanostructureself-assembly using metal–organic frameworks as templates. Chemical Science, 2011, 2, 411-416.	3.7	64
38	A zirconium squarate metal–organic framework with modulator-dependent molecular sieving properties. Chemical Communications, 2014, 50, 10055-10058.	2.2	64
39	Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films. Chemical Communications, 2019, 55, 10056-10059.	2.2	64
40	Solvent-Free Powder Synthesis and MOF-CVD Thin Films of the Large-Pore Metal–Organic Framework MAF-6. Chemistry of Materials, 2020, 32, 1784-1793.	3.2	62
41	ZIF-8 as Nonlinear Optical Material: Influence of Structure and Synthesis. Chemistry of Materials, 2016, 28, 3203-3209.	3.2	57
42	Mechanical properties of electrochemically synthesised metal–organic framework thin films. Journal of Materials Chemistry C, 2013, 1, 7716.	2.7	53
43	Thin Film Growth of nbo MOFs and their Integration with Electroacoustic Devices. Advanced Functional Materials, 2016, 26, 1699-1707.	7.8	53
44	Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films. Chemistry of Materials, 2019, 31, 9462-9471.	3.2	52
45	MOF @ MEMS: Design optimization for high sensitivity chemical detection. Sensors and Actuators B: Chemical, 2012, 168, 256-262.	4.0	50
46	What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. Journal of the American Chemical Society, 2021, 143, 6705-6723.	6.6	48
47	Hybrid Polymer/Metal–Organic Framework Films for Colorimetric Water Sensing over a Wide Concentration Range. ACS Applied Materials & Interfaces, 2018, 10, 24201-24208.	4.0	46
48	Alcohol amination with heterogeneous ruthenium hydroxyapatite catalysts. Applied Catalysis A: General, 2014, 469, 191-197.	2.2	45
49	First examples of aliphatic zirconium MOFs and the influence of inorganic anions on their crystal structures. CrystEngComm, 2015, 17, 331-337.	1.3	44
50	Porosimetry for Thin Films of Metal–Organic Frameworks: A Comparison of Positron Annihilation Lifetime Spectroscopy and Adsorptionâ€Based Methods. Advanced Materials, 2021, 33, e2006993.	11.1	40
51	Get the light out: nanoscaling MOFs for luminescence sensing and optical applications. Chemical Communications, 2019, 55, 4647-4650.	2.2	38
52	Bioâ€Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids. ChemSusChem, 2015, 8, 345-352.	3.6	32
53	Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles. Chemical Communications, 2015, 51, 6528-6531.	2.2	31
54	Two-dimensional metal–organic frameworks with high thermoelectric efficiency through metal ion selection. Physical Chemistry Chemical Physics, 2017, 19, 19461-19467.	1.3	30

#	Article	IF	CITATIONS
55	Surface Morphology and Electrical Properties of Cu ₃ BTC ₂ Thin Films Before and After Reaction with TCNQ. ACS Applied Materials & Interfaces, 2018, 10, 39400-39410.	4.0	30
56	Guest molecules as a design element for metal–organic frameworks. MRS Bulletin, 2016, 41, 865-869.	1.7	26
57	Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts. ACS Catalysis, 2015, 5, 6690-6695.	5.5	22
58	Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters. Journal of Materials Chemistry C, 2016, 4, 4259-4268.	2.7	22
59	Controlled Nucleation and Growth of Pillared Paddlewheel Framework Nanostacks onto Chemically Modified Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 1509-1514.	4.0	20
60	Solventâ€Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridylâ€Triazolate Framework. European Journal of Inorganic Chemistry, 2020, 2020, 71-74.	1.0	15
61	Metal–organic framework deposition on dealloyed substrates. Journal of Materials Chemistry A, 2015, 3, 19747-19753.	5.2	13
62	Aqueous Flow Reactor and Vapourâ€Assisted Synthesis of Aluminium Dicarboxylate Metal–Organic Frameworks with Tuneable Water Sorption Properties. Chemistry - A European Journal, 2020, 26, 10841-10848.	1.7	13
63	Effect of different oxide and hybrid precursors on MOF-CVD of ZIF-8 films. Dalton Transactions, 2021, 50, 6784-6788.	1.6	13
64	Photopatterning of fluorescent host–guest carriers through pore activation of metal–organic framework single crystals. Chemical Communications, 2017, 53, 7222-7225.	2.2	12
65	Why conductivity is not always king – physical properties governing the capacitance of 2D metal–organic framework-based EDLC supercapacitor electrodes: a Ni ₃ (HITP) ₂ case study. Faraday Discussions, 2021, 231, 298-304.	1.6	12
66	Highly active gauze-supported skeletal nickel catalysts. Chemical Communications, 2013, 49, 8498.	2.2	11
67	From n- to p-Type Material: Effect of Metal Ion on Charge Transport in Metal–Organic Materials. ACS Applied Materials & Interfaces, 2021, 13, 52055-52062.	4.0	10
68	Stabilising Ni catalysts for the dehydration–decarboxylation–hydrogenation of citric acid to methylsuccinic acid. Green Chemistry, 2017, 19, 4642-4650.	4.6	9
69	Thermoelectric Properties of 2D Ni ₃ (hitp) ₂ and 3D Cu ₃ (btc) ₂ MOFs: First-Principles Studies. ECS Journal of Solid State Science and Technology, 2017, 6, N236-N242.	0.9	7
70	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	1.6	6
71	Catalytically active gauze-supported skeletal nickel prepared from Ni–Zn alloys electrodeposited from an acetamide–dimethyl sulfone eutectic mixture. Catalysis Today, 2015, 246, 191-197.	2.2	5
72	Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules. Journal of Physical Chemistry C, 2018, 122, 10846-10856.	1.5	5

#	Article	IF	CITATIONS
73	MOFs modeling and theory: general discussion. Faraday Discussions, 2017, 201, 233-245.	1.6	4
74	Porosimetry: Porosimetry for Thin Films of Metal–Organic Frameworks: A Comparison of Positron Annihilation Lifetime Spectroscopy and Adsorptionâ€Based Methods (Adv. Mater. 17/2021). Advanced Materials, 2021, 33, 2170133.	11.1	3
75	From conventional to conformal. Nature Materials, 2016, 15, 255-257.	13.3	2
76	Highlights from the Faraday Discussion on New Directions in Porous Crystalline Materials, Edinburgh, UK, June 2017. Chemical Communications, 2017, 53, 10750-10756.	2.2	0