Rohan P Naidu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9094921/publications.pdf

Version: 2024-02-01

28 papers

1,491 citations

361045 20 h-index 28 g-index

28 all docs 28 docs citations

28 times ranked

1473 citing authors

#	Article	IF	CITATIONS
1	The synchrony of production and escape: half the bright Lyα emitters at <i>z</i> Ââ‰^ 2 have Lyman continuum escape fractions â‰^50. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4582-4607.	1.6	63
2	Evidence from Disrupted Halo Dwarfs that r-process Enrichment via Neutron Star Mergers is Delayed by ≳500 Myr. Astrophysical Journal Letters, 2022, 926, L36.	3.0	33
3	(Re)Solving reionization with Lyl±: how bright Lyl± Emitters account for the <i>z</i> â‰^ 2–8 cosmic ionizing background. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5960-5977.	1.6	32
4	Dark-ages reionization and galaxy formation simulation XX. The Ly α IGM transmission properties and environment of bright galaxies during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3858-3866.	1.6	19
5	No Evolution in the Half-mass Radius of Milky Way–type Galaxies over the Last 10 Gyr. Astrophysical Journal Letters, 2022, 932, L23.	3.0	2
6	Ancient Very Metal-poor Stars Associated with the Galactic Disk in the H3 Survey. Astrophysical Journal, 2021, 908, 208.	1.6	11
7	Orbital Clustering Identifies the Origins of Galactic Stellar Streams. Astrophysical Journal Letters, 2021, 909, L26.	3.0	51
8	All-sky dynamical response of the Galactic halo to the LargeÂMagellanic Cloud. Nature, 2021, 592, 534-536.	13.7	64
9	Velocity Dispersion of the GD-1 Stellar Stream. Astrophysical Journal Letters, 2021, 911, L32.	3.0	14
10	The X-SHOOTER LymanÂl̂ \pm survey at <i>z</i> = 2 (XLS- <i>z</i> 2) I: what makes a galaxy a LymanÂl̂ \pm emitter?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1382-1412.	1.6	38
11	New Determinations of the UV Luminosity Functions from z $\hat{a}^{-1/4}$ 9 to 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency. Astronomical Journal, 2021, 162, 47.	1.9	166
12	Reconstructing the Last Major Merger of the Milky Way with the H3 Survey. Astrophysical Journal, 2021, 923, 92.	1.6	76
13	Rapid Reionization by the Oligarchs: The Case for Massive, UV-bright, Star-forming Galaxies with High Escape Fractions. Astrophysical Journal, 2020, 892, 109.	1.6	166
14	Timing the Early Assembly of the Milky Way with the H3 Survey. Astrophysical Journal Letters, 2020, 897, L18.	3.0	77
15	High-resolution Spectroscopy of the GD-1 Stellar Stream Localizes the Perturber near the Orbital Plane of Sagittarius. Astrophysical Journal Letters, 2020, 892, L37.	3.0	34
16	A Lower Limit on the Mass of Our Galaxy from the H3 Survey. Astrophysical Journal, 2020, 888, 114.	1.6	11
17	A Diffuse Metal-poor Component of the Sagittarius Stream Revealed by the H3 Survey. Astrophysical Journal, 2020, 900, 103.	1.6	21
18	Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure. Astrophysical Journal, 2020, 901, 48.	1.6	204

#	Article	IF	CITATIONS
19	Discovery of Magellanic Stellar Debris in the H3 Survey. Astrophysical Journal Letters, 2020, 905, L3.	3.0	10
20	Model-independent constraints on the hydrogen-ionizing emissivity at z & amp;gt; 6. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2669-2676.	1.6	42
21	The Discovery of a Gravitationally Lensed Quasar at zÂ=Â6.51. Astrophysical Journal Letters, 2019, 870, L11.	3.0	71
22	Mapping the Stellar Halo with the H3 Spectroscopic Survey. Astrophysical Journal, 2019, 883, 107.	1.6	80
23	Resolving the Metallicity Distribution of the Stellar Halo with the H3 Survey. Astrophysical Journal, 2019, 887, 237.	1.6	65
24	zÂâ^¼Â2.5–3 Ionizers in the GOODS-N Field. Astrophysical Journal, 2018, 862, 142.	1.6	8
25	A low Lyman Continuum escape fraction of <10 per cent for extreme [O iii] emitters in an overder at zÂâ^¼Â3.5. Monthly Notices of the Royal Astronomical Society, 2018, 478, 791-799.	nsity 1.6	56
26	They Might Be Giants: An Efficient Color-based Selection of Red Giant Stars. Astrophysical Journal Letters, 2018, 861, L16.	3.0	11
27	HDUV: The Hubble Deep UV Legacy Survey. Astrophysical Journal, Supplement Series, 2018, 237, 12.	3.0	44
28	The HDUV Survey: Six Lyman Continuum Emitter Candidates at zÂâ^1/4Â2 Revealed by HST UV Imaging*. Astrophysical Journal, 2017, 847, 12.	1.6	22